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Abstract

Images of cellular structures in growing plant roots acquired using
confocal laser scanning microscopy (CLSM) have some unusual properties
that make motion estimation challenging. These include multiple mo-
tions, non-Gaussian noise and large regions with little spatial structur e.
In this paper, a method for motion estimation is described that uses a
robust multi-frame likelihood model and a technique for estimati ng un-
certainty. An e�cient region-based matching approach was used followe d
by a forward projection method. Over small timescales the dynamics are
simple (approximately locally constant) and the change in appearance
small. Therefore a constant local velocity model is used and the MAP
estimate of the joint probability over a set of frames is recovered. O ccur-
rences of multiple modes in the posterior are detected, and in the case
of a single dominant mode, motion is inferred using Laplace'e method.
The method was applied to several Arabidopsis thaliana root growth se-
quences with varying levels of success. In addition, comparative results
are given for three alternative motion estimation approaches, the Kanade-
Lucas-Tomasi tracker, Black and Anandan's robust smoothing method,
and Markov random �eld based methods.

1 Introduction

The dynamic processes of cell growth and expansion are of fundamental impor-
tance to our understanding of plant function and morphogenesis. However, the
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growth of cells within plants and the motion of organelles within cells is still not
well understood. Tracking in time-lapse microscopy images has been employed
in the identi�cation of morphological traits in many plant cell cultures, such as
barley [25], single suspension cells of carrot (Daucus carota L.) [36], and leaf
explants from Dactylis glomerata L. [32]. Moreover, images have usually been
captured by traditional microscopy and cell tracking has been performed manu-
ally. Some commercial image analysis tools are available such as Volocity from
Improvision [15] and Metamorph from Universal Imaging Corporation [37], but
their capabilities for automatic plant cell tracking are limited.

The innovations of confocal laser scanning microscopy (CLSM) and 
uores-
cent proteins have enabled new research perspectives on the study of cellular
dynamics within the living plant at submicron resolutions [10]. CLSM bridges
the gap between lower resolution wide �eld=bright �eld microscopy which allows
the imaging of live tissue but with little cellular detail and electron microscopy,
where cellular structure can be imaged but with the disadvantage that samples
cannot be imaged alive. CLSM combined with 
uorescence labelling can pro-
vide rich, high resolution spatiotemporal data on the structure and dynamics
of live biological specimens. When combined with targeted, 
uorescent markers
such as green 
uorescent protein (GFP), speci�c cell structures can be isolated,
providing rich data for studying the morphology and physiology of living plant
systems, e.g. [11, 12].

There have been investigations into estimating growth using other (external)
imaging modalities. van der Weeleet al. [38] applied low-level motion estimation
methods to non-
uorescence microscope images of the external surface ofA.
thaliana roots (without the application of graphite particles). Walter et al. [39]
tracked maize root surfaces using infra-red illumination. Barron and Liptay [3]
used di�erential 
ow from multi-view optical imaging and near infra-red imaging
to recover the growth of maize seedlings. Recently, machine vision has also been
applied to detecting and measuring roots in minirhizotron images captured by
a miniaturized color camera on a telescopic handle [41].

This paper focuses on automatic analysis of the motion of cellular structure
in Arabidopsis thaliana roots (a model system in plant sciences) captured by
confocal laser scanning microscopy (CLSM). An example of anA. thaliana root
image produced using CLSM is shown in Fig. 1. This specimen expresses a
single 
uorescence marker targeted to the plasma membrane (LTI-eGFP) [18].

Success for this application would allow large quantities of confocal data fora
variety of con�gurations to be analysed thus improving our ability to understand
plant biological processes. An accurate, automatic, and quantitative motion
estimation method would facilitate controlled experiments to investigate the
e�ects of environmental conditions on root growth responses [4]. One long-term
goal is to study the coordination of growth between cells in theA. thaliana root
tissue, and speci�cally which cell types control root elongation. This biological
question could be linked to cellular mechanisms controlling the direction of cell
expansion, via the cytoskeleton and speci�cally microtubular orientation.

The image data of growing A. thaliana roots acquired using CLSM have
some unusual properties that make automated low-level estimation of the mo-
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Figure 1: An example of an Arabidopsis thaliana root image captured using
CLSM at 10� magni�cation.

tion of cellular structures challenging. Firstly, the images are formed from the
interaction of laser illumination with sparse, 3D cellular markers. The result-
ing sparse images often contain little stable texture in many regions andlarge
amounts of impulsive noise, and can be a�ected by illumination changes and
thresholding e�ects. Secondly, cells form a complex structure, where neighbor-
ing cells are similar to each other while having small but important di�erences.
Thirdly, automatic detection of cell boundaries is complicated by blurring in
depth, leading to boundaries from other layers being visible, and signi�cant
clutter in the datasets. Fourthly, the apparent motion is the result of a com-
bination of non-rigid cell growth and its interaction with the growth medium ,
motion of 
uorescent protein not yet at its targeted position within the cell, and
occasionally global translation of the whole specimen.

There are broadly two main approaches to generic motion estimation in com-
puter vision: local approaches where motion estimates are based upon data close
to the point to be estimated, and global approaches whereby motion estimates
are based upon data from the image as a whole. Previous work on automatic
analysis of plant cells from confocal data has focussed mainly on local optical

ow methods [4]. It is well known that motion constraints are necessary in
order to perform motion estimation. In particular, brightness constancy and
motion smoothness constraints are often adopted to make the problem well
posed. Whilst smoothness priors can help increase accuracy and reduce am-
biguity, smoothing over motion discontinuities is undesirable. Methods based
on robust estimation and piecewise smoothing can partly overcome such draw-
backs [5]. However, due to the lack of persistent local features, it is di�cult to
obtain accurate cell growth measurements using such general purpose optical

ow methods. Therefore, it is important, especially in applications such as that
considered in this paper, to estimate some measure of certainty of the motion
estimates.

The aim of this paper is to develop a local region-based algorithm incorporat-
ing a robust likelihood, a constrained temporal model, and a suitable technique
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for estimating uncertainty. The likelihood function is multi-modal. Similar ly
to the method proposed by Singh [31], modes were found using e�cient region-
based matching followed by a forward projection method, the use of which is
novel in this context. Since the dynamics of the root, over the small timescales
investigated here, are constrained and simple (compared to the variability in
appearance), estimation is based on multiple frames to reduce gross errors and
improve accuracy. By re-weighting the modes of the likelihood function ac-
cording to a temporal prior, a more accurate estimation of uncertainty can be
obtained.

The performance of the proposed motion estimation method is compared to
that of the Kanade-Lucas-Tomasi (KLT) tracker [1, 23], Black and Anandan's
robust smoothing method [5], and Markov random �eld (MRF) based methods.
Empirical evidence presented here suggests that the proposed method improves
upon these methods for this application.

The remainder of this paper is organized as follows. In Section 2, the pro-
posed method is presented in detail followed by brief descriptions of the other
methods to which it is compared in Section 3. The method is then evaluated
by applying it to various sequences and comparative results are reported in Sec-
tion 4. Finally, conclusions and recommendations for future work are given in
Section 5.

2 Robust Motion Estimation with Uncertainty

2.1 Overview

An algorithm with three steps is presented for motion estimation of plant root
cells. In the �rst step, the probabilities of displacements whose horizontal and
vertical components are integers are considered for each pixel location. In other
words, displacements on a pixel grid are explored. Secondly, those pixels at
which local motion might be estimated with reasonable certainty are selected.
These correspond to the pixels at which one speci�c motion has high probability.
At these locations, a forward projection method is applied to robustly recover
subpixel motion. Thirdly, 2D motion estimates are computed at these locations,
along with their uncertainty. This is achieved using the Laplace method with
centred di�erence approximation.

2.2 Motion Model

Inspection of the data showed that without accounting for signi�cant changes in
appearance, it is only possible to track over a few frames, between two and �ve
in typical datasets. As mentioned earlier, the dynamics of the root over these
small timescales are constrained and simple so we can make use of multiple
frames to reduce gross errors and improve accuracy. Motion estimates are not
propagated forward sequentially as in many traditional methods such as KLT[1].
Rather, the goal of the algorithm is inferring a joint posterior over a sequence of
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frames. The motion is modelled as locally translational with a constantvelocity
prior. This is a representative model of motion encountered in biology [29]. For
such time periods, a uniform prior over a prede�ned range of velocities was used.
Cells grow continuously over time with a �nite maximum velocity. A reasonable
upper bound, N , on the displacement of a pixel from one frame to the next can
be estimated visually fairly easily.

2.3 Likelihood

Once a region-based approach has been adopted, one important aspect in accu-
rately establishing correspondence across a plant root sequence is how to mea-
sure the similarity between image regions at di�erent times. The most widely
used dissimilarity measurement between regions is the sum of squared di�erence
(SSD). This arises from the use of a Gaussian likelihood function. However, a
Gaussian likelihood model is not appropriate for this application.

The complex form of CLSM pixel noise is shown in Fig. 2. The quantiles
of the empirical distribution of noise (from fast successive scans of the same
root portion) were aligned with the quantiles of the normal distribution. I f the
noise was Gaussian the plot in Fig. 2(b) would be a straight line. In fact, three
components can be identi�ed: a central linear segment corresponding to approx-
imately Gaussian sensor noise, a linear segment corresponding to approximately
Gaussian biological variation (perhaps due to small scale motion of proteins),
and large outliers in the tails.

Such empirical observation of the form of the image noise motivated the use
of a non-Gaussian likelihood function of a motionv. We begin by de�ning the
likelihood of an integer displacement and subsequently describe a method for
handling sub-pixel displacements. Assuming independence between local pixels
given the motion v at pixel x , the negative log-likelihood function is de�ned (up
to a constant scaling factor) as

� log (p(I 1:T jv )) /
TX

t =1

X

( i;j )2 


K (i; j )D (t; v ; i; j ) (1)

where the dissimilarity measurement is a truncated quadratic:

D (t; v ; i; j ) =
�

[I 1(x + ( i; j )) � I t (x + ( t � 1)v + ( i; j ))]2 if D (t; v ; i; j )� 


 otherwise

(2)
which is based on the computation of the distanceD(t; v ; i; j ) between the
neighbourhood of pixel x = ( x; y) in the �rst frame I 1 and the neighbourhood
of pixel x + ( t � 1)v from the tth frame I t . The cut-o� 
 was set empirically to
3 times the standard deviation. Note that no normalising constant needs to be
speci�ed for this 'likelihood' for what follows. Various other robust norms were
tried with similar results.

The sum in Eq. (1) is taken over several consecutive frames (typically 3) and
a circular region 
 = f (i; j )j

p
i 2 + j 2 < R g. Kernel K is linearly weighted and
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(a)

(b)

Figure 2: (a) The (scaled) absolute di�erence between two scans taken in rapid
succession so that growth is negligible. (b) A normal probability plot showing
the non-Gaussian nature of the noise (formed from the di�erence between two
close scans). The form of the curve suggests three components which are de-
marcated by the vertical lines on the plot: approximately Gaussian background
noise (central linear section, corresponding to the majority of the pixels), ap-
proximately Gaussian `biological noise' (larger linear sections) and outliers.6



has maximum value at the centre of the region and zero value at its boundary.
R is the radius.

A forward projection approach [13] was used to determine the likelihood of
subpixel displacements. In contrast to the usual approach of interpolating the
image, this more principled approach uses the correct amount of data from the
image and reduces the bias issues associated with interpolation based methods
which make subpixel motions less probable than whole pixel motions [30]. For
sub-pixel estimation, interpolation between the robust functionals with weights
proportional to the overlapping pixel regions was performed (see Fig. 3). The
�nal weight of each pixel ! (m; n) accumulates the sum of the weights of subpixels

Figure 3: Illustration for the calculation of weight A(i; j ), where x0=1 and y0=1

denote image pixel coordinates,A(x0; y0)/ area of T0, A(x1; y0) / area of T1,
A(x0; y1)/ area of T2, and A(x1; y1)/ area of T3.

! (m; n) =
X

i

X

j

A(m; n; i; j ) (3)

In computing forward projection, both the kernel value bK (m; n) and the inten-
sity value bI 1(x + ( i; j )) of a pixel within the circular region 
 are weighted sums
as follows:

bK (m; n) =
X

i

X

j

A(m; n; i; j )K (i; j ) (4)

bI 1(x + ( m; n)) =
X

i

X

j

A(m; n; i; j )I 1(x + ( i; j )) (5)

In order to consider subpixel accuracy, the log-likelihood function in Eq. (1)
is re-written in the following form:

� log (p(I 1:T jbv)) /
X

t

X

m

X

n

! (m; n) bK (m; n) bD(t; v ; m; n) (6)
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where bD(t; v ; m; n) is obtained by substituting bI 1 of Eq. (5) in place of I 1 in
Eq. (2).

2.4 Inference

For computational e�ciency, we begin by evaluating an integer displacement
grid to quickly determine a set of interesting points (points with high pr obability
of a speci�c motion), where displacements are assumed to be a wide range of

integer pixels/frame, with
q

v2
x + v2

y � N . The fact that the negative log-

likelihood never increases as terms are included in its sum is used to speed
up the search by terminating likelihood evaluations early when they reach a
su�ciently low value for a particular displacement. This value is an empiricall y
determined constant that determines the minimum likelihood value needed for a
motion estimation to proceed. If two signi�cantly di�erent motions have a hig h
likelihood this indicates multi-modality, in which case that point is label led as
having ambiguous visual motion.

For all the interesting points found, a second step is conducted to robustly
recover subpixel motion. As detailed in Section 2.3, a forward projection method
similar to that presented by Harauz and Ottensmeyer [13] is applied for estimat-
ing accurate subpixel motion. The sampled motionv0 with maximum posterior
is found for each pixel not labelled as having ambiguous visual motion. These
estimates are re�ned by computing a local expected value:

v =
X

� x

X

� y

p(v0+ h(� x ; � y )jI 1:T )(v0+ h(� x ; � y ))=
X

� x

X

� y

p(v0+ h(� x ; � y )jI 1:T )

(7)
where h is a subpixel displacement step, and was set to 0.1 in the experiments
reported here.

The Laplace method [24] is applied to estimate uncertainties in these motion
estimates, approximating the posteriorp(v jI 1:T ) as Gaussian. The posterior can
be expressed as

p(v jI 1:T ) = p� (v)=C (8)

where C �
R

p� (v)dv is a normalization constant. Using a Taylor expansion of
the logarithm of p� (v) centred around the maximum at v0, we have

logp� (v) ' logp� (v0) �
1
2

(v � v0)T A (v � v0) (9)

where A is a 2� 2 Hessian matrix de�ned by

A ij = �
@2

@vi @vj
logp� (v)jv= v 0 (10)

Thus, the posterior can be approximated by the following Gaussian

p(v) =
1

2� jA j � 1=2
exp(�

1
2

(v � v0)T A (v � v0)) (11)
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The centred di�erence approximation with fourth order error [19] is em-
ployed to compute the Hessian matrixA . For example, the second derivatives
A11 and A22 can be obtained by

8
>><

>>:

A11 = ( � p(v0 + (2 h; 0)jI 1:T ) + 16p(v0 + ( h; 0)jI 1:T ) � 30p(v0jI 1:T ) +
+ 16p(v0 + ( � h; 0)jI 1:T ) � p(v0 + ( � 2h; 0)jI 1:T ))=12h2

A22 = ( � p(v0 + (0 ; 2h)jI 1:T ) + 16p(v0 + (0 ; h)jI 1:T ) � 30p(v0jI 1:T ) +
+ 16p(v0 + (0 ; � h)jI 1:T ) � p(v0 + (0 ; � 2h)jI 1:T ))=12h2

(12)

The covariance matrix
P

=
�

� 2
x � xy

� xy � 2
y

�
is given by A � 1.

2.5 Implementation

The overall pseudo-code for the motion estimation algorithm for each pixel is
given in Table 1. The algorithm was implemented in Java under Windows XP
on an Intel R Core2 processor, 2.4 GHz machine, and interfaced to ImageJ, the
Java image processing program developed by Wayne Rasband at the United
States National Institutes of Health and available at http://rsb.info.ni h.gov/ij.
An ultimate aim of this work is to deliver an open-source workbench application
capable of accurate analysis of large amounts of confocal data. In this appli-
cation speed is not critical but the method must be feasible for deployment to
standard PC workstations.

3 Other Methods

The proposed method was compared to three other algorithms widely used
for motion estimation in the literature. These methods are now outlined for
completeness.

As a local feature tracking method, KLT [1, 23] is a straightforward and
popular approach to motion estimation. Since this method, in the form in-
vestigated here, uses only spatiotemporally localised data, the method is quite
simple, popular and general. It was used here as a baseline for comparing the
methods. Birch�eld's publicly available implementation of the KLT method
(v1:3:2) was used in this study.

The use of global spatial smoothing to remove local ambiguities and improve
accuracy has a long history in optical 
ow estimation [14]. The second method,
which is due to Black and Anandan [5], is based upon robust spatial smoothing
that preserves motion discontinuities. In this method the equations resulting
from the minimisation of both a robust function on the image residuals and
a robust spatial smoothing function are solved using an iterative, multi-scale,
graduated non-convexity algorithm, a key idea in which is approximation of the
non-convex robust functions with convex functions.

Markov random �elds can be used to elegantly model many low-level vision
tasks that require global spatiotemporal context such as motion estimation,
stereo disparity and segmentation. They emphasise a discrete and probabilistic
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1. Initialise the parameters for likelihood calculation

(a) Extract a circular region centered at the pixel and obtain the
intensity value of each pixel within the region

(b) Calculate a linearly weighted kernel K having maximum value at
the center and zero at the boundary

2. Explore the posterior over integer displacements

(a) Calculate the motion likelihoods for the sequence

(b) Find the maximum motion likelihood in the region

3. If the maximum likelihood > given likelihood threshold value

(a) Introduce a weight parameter ! to account for subpixel accuracy
using a forward projection method

(b) Calculate the weighted intensity values and kernelK of the region

(c) Repeat Step 2 to �nd the maximum likelihood and its correspond-
ing motion with subpixel displacement

4. Estimate the motion as local expectations and their corresponding co-
variance matrices (uncertainties)

(a) Estimate the pixel motions by the sum of neighbourhood motions
weighted by their posteriors

(b) Calculate the corresponding covariance matrix based on the
Laplace method and the centered di�erence approximation

Table 1: The overall structure of the proposed algorithm for motion estimation.
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approach. MRFs are discussed in detail in Li's book [21]. The key problem
in employing MRFs, which model the overall probability of a con�guration
using a cyclic network of local functions, is solving the resulting global and
high dimensional inference problem. A selection of techniques are discussed
for this purpose, in particular graph cuts (GC) and loopy belief propagation
(BP), which have been reported to give robust and high performance inference
for MRF models in many recent papers [6, 17, 9, 35]. We have investigated
MRFs with a range of data and smoothing energy functions. In particular,
the following data energy functions were tried: quadratic (r 2), McClure Geman
(r 2=(s2 + r 2)), and truncated quadratic ( r 2 or c2 if r > c with c constant). The
following smoothing functions were tried: linear, truncated linear and quadratic,
and McClure Geman with a range of di�erent smoothing strengths. GC [17]
and loopy BP [9] were used to solve the resulting inference problems. These
methods were evaluated based upon the publicly available Middlebury MRF
energy minimisation code (v1:6) [34], which contains algorithms contributed by
various authors. Discrete (i.e. not subpixel) velocity labels were used.

4 Experimental Results

4.1 Plant Preparation and Image Acquisition

Arabidopsis thaliana roots transformed to express eGFP targeted to the plasma
membrane (PM) were grown in vitro in 0:5� Murashige and Skoog nutrient
media, solidi�ed with 0.7 phytoagar [18]. Images of their roots were acquired
on a Leica TCS SP1 confocal microscope using a 10� (NA 0:3) objective lens at
medium scan speed (400MHz ). Excitation at 488 nm of the 
uorochrome probe
was achieved with a 20mW Argon laser light source. Fluorescence emission was
detected using a 500� 530nm �lter. Two-dimensional image layers at �xed
depth were captured as time series at high resolution of 1024� 1024 with 8 bits
per pixel.

The time interval between acquisition of images was relatively large (60s)
and inter-frame motion was correspondingly large making motion estimation
challenging. An upper bound on velocity for all test sequences was manually
estimated as 8 pixels per frame in any direction. In the portion of root being
studied, cell expansion was of the order of 1 pixel per 70 pixels. At the resolution
used, a visual boundary in the cell network actually corresponds to multiple cell
boundaries and therefore multiple motions of interest are present at the single
pixel level.

4.2 Visualisation

A colormap with 256 entries is de�ned to visualize the motion estimation results
in Figs. 4 and 7. The data values are mapped to colors linearly between the
minimum and the maximum values, which represent the �rst and last color in the
colormap. For the horizontal and vertical components of motions, signed data
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are used, which are mapped to colors from blue through aqua and yellow to red.
Blue and aqua represent negative movements, while yellow and red represent
positive movements. Regions that have a speed close to zero are in dark aqua
or yellow, i.e. black appearance. Blue and red display the fastest negative
and positive movements, respectively. In the case that there are less than one
quarter of motion points having either negative or positive movement, only one
color is used to show that movement. A similar scheme is used to display the
covariance, where black corresponds to no correlation. The standard deviations
of motion � x ; � y are always positive, and are displayed in the same four colors.
Colors from blue through aqua and yellow to red indicate increasing variance
of the motions estimated. Points where velocity is not estimated are shown in
white. In order to make the results comparable, grey scale maps are used for
the �gures presented in Section 4.4.

4.3 Motion Estimation Using the Proposed Method

The algorithm described in Section 2 was applied to a large variety of plant root
data sets with varying levels of success. Figure 4 shows an example of a plant
root (8 days after seed germination), its estimated horizontal and verticalcom-
ponents of motion, their standard deviations and covariance. Cell expansion is
one of the key parameters that determines the ultimate form of plant organs [28].
How far a cell expands and in what direction are the two primary determinants
of a cell's �nal shape. In Fig. 4(c), it is shown that the root tip moves at the
largest speed (around 2:4 pixels per frame). Note that without sub-pixel motion
estimation, only three values (0, 1, and 2 pixels) would be present in Fig. 4(c).
Regions located at positions progressively distant from the tip move atprogres-
sively lower speeds, until the end of the growth zone is reached, where the speed
becomes zero. The cumulative elongation of cells in the growth zone results in
the root tip being propelled at the maximum speed. This is consistent with the
reports of other researchers [38, 4]. The transverse expansion is relativelyslow
with maximum velocity around 0 :78pixels per frame (Fig. 4(b)). The use of
Laplace's method enables uncertainty to be quanti�ed. In Figs. 4(d) and (e),
higher uncertainty for horizontal motion is obtained as compared with that for
vertical motion. Fig. 4(f) shows the covariance of horizontal and verticalmotion
estimated. The small values of covariance suggest that the correlation between
horizontal and vertical motion is weak.

A quantitative comparison with manual motion estimation was
performed. A plant biologist selected 31 points on a root image at
which he was con�dent he could provide motion estimates. These a re
shown in Fig. 5. The same biologist then marked up correspondin g
points on subsequent images in the sequence. This root was grow ing
in a vertical direction so the vertical component of motion was con -
sidered here. Fig. 6 plots the estimates obtained using this manual
method against those obtained using the proposed automatic method.
The manual estimates were more heavily quantised because the lo-
cations were annotated to the nearest pixel. Manual estimates were
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(a) (b)

(c) (d)

Figure 4: Estimated motion in a time-lapse sequence of CLSM images of a grow-
ing Arabidopsis thaliana root (8 days after seed germination): (a) confocal image
(�rst frame in the sequence); (b) estimated horizontal motion (pixels/frame) ;
(c) estimated vertical motion (pixels/frame); (d) standard deviation of ho rizon-
tal motion component; (e) standard deviation of vertical motion component; (f)
covariance of horizontal and vertical motion components. (This �gure should
be viewed in colour).
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(e) (f)

Fig. 4 (continued)

Figure 5: The �rst image in a sequence used to compare manual and automatic
estimation. Estimates were compared at the annotated points.
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Figure 6: Top: Estimates of vertical motion obtained at the points annotated
in Fig. 5 using the manual and automatic methods. Bottom: A Bland-Altman
plot comparing the two methods.
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obtained over temporal intervals of two frames and ten frames. The
former was the same interval used by the automated method. The
ten-frame interval provided less heavily quantised estimates but made
a stronger assumption about constancy of velocity. Fig. 6 shows l inear
regression �ts and demonstrates a strong linear relationship bet ween
the methods; in fact the gradients of these lines are within one stan-
dard error of 1:0. Figure 6 also shows a Bland-Altman plot comparing
the manual estimates with the automated estimates (both estimated
over a 2-frame interval). It plots the average of the two methods
against the di�erence between them. The central line is the bias
( � 0:05). The upper and lower lines are the limits of agreement (i.e.
the bias plus and minus two standard deviations of the di�erence).
The standard error was 0:077. The methods always disagreed by less
than one pixel per frame.

The motion estimation results for three other time-lapse image sequences of
growing A. thaliana roots are shown in Fig. 7. Besides the growing direction,
the ages of these roots are di�erent from the root in Fig. 4. The image sequences
used in the �rst, second, and third columns of Fig. 7 are of roots 5, 6 and 12 days
after seed germination, respectively. Under standardized growing conditions,
root growth rate increases during seedling development. Tropic reactions which
make the root bend from its normal direction of growth may negatively a�ect
root growth rate. The motion estimation results obtained are quite satisfactory
as shown in the second, third, fourth, and �fth rows of Fig. 7, which indicate
that the algorithm re
ects root growth at di�erent times during development
and di�erent growing directions.

However, some regions contain errors for various reasons. In Fig. 4(c),it can
be observed that the motion of one region near the end of the elongation zone is
wrongly estimated as being negative. This error appears to be caused by out-of-
plane motion due to nutation or gravitropic reaction which has resulted in cell
membranes from other layers being visible. One of the most important factors
a�ecting the motion estimation performance is the image quality. Because of the
inherent imperfections of the image formation process, CLSM images are often
corrupted by intensity variations manifesting themselves via spurious intensity
variations not present in the original scene [22], usually referred to as shad-
ing or intensity inhomogeneity. Despite the 
uorophore being expressed from a
constitutive promoter, some areas within the root image appear brighter than
others, due to a combination of slight di�erences in expression levels and shad-
ing e�ects [26]. The shading e�ect can usually be attributed to several known
factors, including 
uorescent attenuation along the confocal (depth) axis, image
acquisition factors, variations of illumination exposure rate, spatially uneven
distribution of the 
uorophore and the spatial characteristics of illuminatio n
beams, and 
uorochrome micro-environment, e.g. pH, temperature, and em-
bedding medium. Comparing the image in the second row with the ones in the
�rst and third rows, the motion estimates in the division zone near the root t ip
are very sparse. This sparsity was caused by the sequence having been acquired
at a lower gain (to avoid clipping). Furthermore, since cell movements are in
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(a) (b)

Figure 7: Estimated motion in time-lapse sequences of CLSM images of three
di�erent growing Arabidopsis thaliana roots. Column (a) shows the �rst confocal
image in each sequence. The corresponding estimation results for horizontal
and vertical motions and their standard deviations and covariances are shown
in columns (b) - (f), respectively. (This �gure should be viewed in colour).
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(c) (d)

Fig. 7 (continued)
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(e) (f)

Fig. 7 (continued)
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3D, the failure in some regions with di�erent motion types is unavoidable dueto
the use of 2D analysis in this work, despite acquisition being arranged so that
out of plane motion is kept to a minimum.

The velocity pro�le, or rate of displacement per unit of time along the root
axis, is a commonly used tool to visualize and quantify the di�erence in ex-
pansion rate along the root axis. Fig. 8 shows an example of the projection
of multiframe motion estimation data to a spline �tted to the central axi s of
the root, resulting in the velocity pro�le. The reference for distance is located
in the root tip (typically at the quiescent centre).The root tip has the highest
velocity, while at a certain distance from the quiescent centre, velocity decreases
abruptly and signi�cantly to approach zero at the end of the growing zone. The
results agree with previous investigations using high resolution images captured
by non-
uorescence microscopy [38].

Particular cell regions (tissues, individual cells and cell membranes) can also
be selected and tracked allowing the study of small changes in cell expansion
rate with a temporal resolution of less than minutes. This represents an exciting
tool for plant physiology studies.

Figure 8: Velocity as a function of distance along the root from a reference
in the root tip (the quiescent centre). Motion was estimated in a time-lapse
sequence of CLSM images of a growing Arabidopsis thaliana root (8 days after
seed germination) (see Fig. 4).
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Estimating motion from an image sequence can require an hour or longer of
processing time. However, in this study, speed of inference was not a primary
concern. The focus was on an algorithm that could reliably infer local motion
in large datasets and give useful measures of uncertainty.

4.4 Comparison with Other Methods

A dataset (see Fig. 9) that contains a mixture of root growth and global transla-
tion was selected to compare the performance of the di�erent methods. Results
are presented after subjectively tuning the parameters to their reported opti-
mal values (automatic parameter learning being non-trivial). Due to the lack
of ground truth we compared the methods directly.

Figure 9: The �rst frame in the sequence used for comparative study.

Results from the KLT method are shown in Fig. 10. The default energy func-
tions and parameters were used (linearized quadratic) with 200 feature tracks
requested. Its performance deteriorated dramatically when the region window
size was below 11� 11 pixels (for which results are shown). Fig. 10(a) is a quiver
plot of the sparse motion estimated. The method fails to tell that the largest
velocity should be around the root tip area. The motion speeds and directions
are estimated wrongly for the cells at the end of elongation zone and the di�er-
entiation zone. The top row of Fig. 10(b) shows that the motion estimated is
not accurate in the root tip region where confusion between the small, similar
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(a)

(b)

Figure 10: Results from the Kanade-Lucas-Tomasi method: (a) a scaled quiver
plot of the sparse motion; (b) two zoomed views illustrating some typical errors.
The top row shows gross errors in the root tip area where cells are small and
similar. Ideally, the white points showing motion occurrence should be located
on the cell membranes. The bottom row illustrates the detection of features on
less stable structures in the elongation zone.
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cells is considerable. Ideally, the white points showing motion occurrence should
be located on the cell membranes. However, around 10% of the feature points
were assigned to intra-cellular regions where the appearance is more variable (as
compared to cell junctions) and the associated motions are more often incorrect.
A more global method will be necessary to remove such ambiguities. As shown
in the bottom row of Fig. 10(b), worse results were obtained when applying the
KLT method to the elongation zone with less stable structures.

Fig. 11 shows the results obtained by using Black and Anandan's robust
smoothing method. The third smoothing level is shown, with parameters close
to their default and recommended values (l1=10, l2=1,S 1=10.0, S2=1.0, s1=5.0,
s2=0.05). As one might expect, the performance of this method with these
parameters agrees with the previous spatially localised method around highly
informative data (e.g. the region 1/3 up from the root tip). However, in r egions
of ambiguity, such as the root tip, the low-level spatial constraints fail to provide
any signi�cant advantages.

Reliably �tting MRFs to our data using those algorithms described in Sec-
tion 3 proved di�cult. The algorithms were quite sensitive to the parameters
used, often providing clearly inaccurate results that were often inconsistent be-
tween algorithms. Partially successful results (using the regularised quadratic
image noise and linear smoothing function) for expansion and swap GC algo-
rithms are shown in Fig. 12. These best results were achieved after extensive
manual parameter tuning on this data set. Lower velocity estimates in the root
tip region are incorrect but the results are better than Black and Anandan's
method in this region, which suggests that the linear smoothing function is
more appropriate for these data. However, in comparison with that method,
smoothing elsewhere provides inaccurate estimates. Loopy BP in the form of
max-product (Middlebury and in-house implementation) and min-sum (in-house
implementation) also produced poor results and had prohibitively high mem-
ory requirements (a recognised problem with BP that has drawn some interest
recently, e.g. [16, 9]). We note that all methods were able to produce accurate
results when applied to synthetic transformations (i.e. root images with simple
translation) with a wide range of energies/parameters. The �nal algorithm in
the Middlebury suite was iterated conditional modes (ICM) and, as would be
expected, this gave very poor results due to getting trapped in local minima
early on (with energy values much higher than graph cuts).

The results obtained by the developed method using 2 or 3 frames with an
11 pixel circular window are shown in Fig. 13. It can be clearly seen that using
a constrained motion model over 3 frames reduces the gross errors present in
the above results. Using even a single extra frame with a constrained motion
model can increase motion estimation certainties as can be seen by comparing
the images in Fig. 13(c). Gross motion estimation errors are reduced as can
been seen by inspecting the inset magni�ed region in Fig. 13(a) and comparing
it to the corresponding region in Fig. 13(b).
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(a)

(b)

Figure 11: Results from Black and Anandan's robust smoothing method: (a)
and (b) show horizontal and vertical components of 
ow scaled to be comparable
with the other results. The method is accurate around informative structures
but low-level spatial smoothing provides little advantage, sometimes even re-
ducing accuracy due to localised over-smoothing, compared with local methods.
(c) shows violations of the spatial coherence model.
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(c)

Fig. 11 (continued)

4.5 Discussion

The algorithm presented in Section 2 was motivated by the study of the dynamic
behaviors of plant cell growth and expansion. The results obtained by the
software are now discussed with some biological background and interpretation.

Root elongation or growth is the result of a combination of cell division and
cell expansion. The division zone of the Arabidopsis comprises of the quiescent
centre surrounded by root initial cells. These cells are generally isodiametric
in shape. Within the division zone, the root initials undergo several rounds
of very tightly controlled division only expanding slightly in size. Hence the
horizontal motion of cells shown in Fig. 4(b) exhibits no clear dominant motion.
As the distance between the cells and the quiescent centre increases, the cells
begin to rapidly expand longitudinally resulting in cells which are longer than
their cylindrical diameter. The vertical motion estimated in Fig. 4(c) is mai nly
attributed to longitudinal expansion, while only minor contribution is from cell
division. Therefore, low uncertainty was estimated as shown in Fig. 4(e). Cells
undergo further development in the di�erentiation zone where some cells may
expand in alternative directions to become root hair cells and highly oriented in
the longitudinal axis. At this stage, both longitudinal and radial components
of motion are approximately zero, as correctly estimated by the algorithmas
illustrated in Figs. 4(b) and 4(c).

Another interesting result is that the pixels detected with high certainty
motion are mostly located at the outer cell layers as seen in Figs. 4 and 7.
These cell layers are particularly important for root growth [33]. From the
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(a)

(b)

Figure 12: Results from the MRF model with various inference schemes: (a) and
(b) show the horizontal and vertical components using the expansion graph cuts
algorithm, respectively; (c) and (d) show the horizontal and vertical components
using the swap graph cuts algorithm, respectively. These algorithms proved
sensitive to the choice of energy functions and parameters and often, as in this
case, provided inconsistent results. Note that the sharp changes are due to the
discrete encoding of velocities and are not an inherent problem with the method.
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(c)

(d)

Fig. 12 (continued)
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(a)

(b)

Figure 13: Results from the proposed method. The left column shows results
using two frames and the right column shows results using three frames. (a)
and (b) show estimated horizontal and vertical motion, respectively. Mid-grey
values correspond to zero motion, white to right/down and black to left/up wi th
a range of 8 in all directions. Points where velocity is not estimated are shown
in grey. (c) Uncertainty (with black denoting certainty).
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(c)

Fig. 13 (continued)

image shown, one may argue that the inner root tissues are not as clear as
those of the outer layer cells, which might cause the algorithm to fail to report
motion estimation. The possible role of outer vs. inner cell layers in restraining
plant root growth is still a subject of much debate and is well worth further
investigation [2, 4].

In comparing motion estimation methods, it is useful to contrast them in
terms of how much spatial and temporal information is used. As a spatiallyand
temporally localized method, KLT was capable of tracking accurately around
resolvable structure. However, such a method is susceptible to gross errors due
to local ambiguity and large motions. Using a method other than eigenvalue
inspection, that is more application speci�c, could reduce such errors.

Black and Anandan's robust smoothing method does not provide estimates
of spatial uncertainty. The global smoothing reduces accuracy in some regions
due to localised over-smoothing. This can be clearly seen by the incorrect under-
estimated motion at the root tip. Notice that there is no visual evidence in the
motion estimate for a discontinuity at the root agar boundary. The method,
without further prior knowledge, could not be expected to identify this motion
boundary.

One disadvantage of the MAP methods used in MRFs is that, although they
use probabilistic models, they do not produce spatial estimates of uncertainty
(although marginals could be estimated using min-sum BP). It is important
when discussing MRFs to mention the problem of automatic parameter learn-
ing, for example ML estimation of � in p(x; � ) = Z � 1(� )e� E (x ;� ) given a col-
lection of i:i:d: datasets. This is complicated due to the global nature of the
partition function, Z , and the large amount of data. Some recent progress, e.g.
Hinton's contrastive divergence method [7], may make this more feasible, but
sensitivity to the smoothing parameters and poor or inconsistent inference sug-
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gest this will be di�cult on these data. There have been criticisms elsewhere
of simple MRF models, e.g. those involving pairwise smoothing functions, for
other applications, leading to proposals such as the product-of-experts methods
for modelling, and learning, higher order clique potentials, e.g. [20].

For the proposed method, a signi�cant degree of local ambiguity was re-
moved by employing temporal constraints. Notice the errors due to aperture
problems on cell membranes. The certainty is correctly estimated to be low
where such errors occur. The large motions, lack of evidence in many regions,
secondary motions and signi�cant non-Gaussian noise justify the need for more
sophisticated spatial constraints in order to produce more accurate motion es-
timates.

5 Conclusions and Future Work

A robust method was developed for estimating motion in CLSM images of living
plant roots. Experimental results demonstrated that by employing robust like-
lihoods, temporal constraints, and estimates of uncertainty, the algorithm per-
formed well for motion estimation in this domain. Comparative results showed
that a spatially and temporally localized method was not able to track the
smaller, repetitive cell structure in the root tip and was somewhat prone to
identifying spurious features. Generic low-level smoothing functions do not per-
form well in this application, due to large regions with little stable str ucture.
In contrast to recent positive investigations, GC and loopy BP for MAP esti-
mation of the MRF labels provided inconsistent results on these data. For the
large motions, lack of evidence in many regions, secondary motions and signif-
icant non-Gaussian noise, a key conclusion that can be drawn is the need for
more sophisticated spatial constraints in order to produce more accurate motion
estimates.

The image velocity was assumed to be approximately constant within a lo-
cal neighbourhood. The size of the neighbourhood was chosen manually and
depended on scale. Future work could explore setting this automatically, pos-
sibly di�erently across the image. The likelihood function also embodied the
assumption that the appearance of a local neighbourhood is constant over a
short period of time (given the motion). The error in the assumption of ap-
pearance constancy was modelled as statistically independent pixel variation.
Various forms of pixel-wise likelihood should be further investigated, e.g.mix-
tures. Careful examination of Fig. 2(a) suggests that much of the variation
is highly localised and that the independence assumption is a reasonable mod-
elling strategy. However, the pixel variations given the motion are to some
extent dependent. Changing the model of local appearance to account for these
dependencies between pixel variations in a local neighbourhood would be more
computationally expensive and non-trivial. It would be interesting to invest i-
gate whether such models would yield improved motion estimation given the
available data from which to learn such dependencies. However, such an inves-
tigation lies beyond the scope of this paper.
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Since the prior is very uninformative, all the pixels were used to test for
multiple strong likelihood peaks. For faster motion estimation, one possible
approach is to use thresholding to identify cells �rstly, but this should be em-
ployed with care. Due to the unusual properties of plant root images acquired
by CLSM, it is inevitable that some thresholded pixels that ideally should form
parts of cells will be omitted or vice versa.

It is likely that we will be placing more emphasis on developing task spe-
ci�c, higher level, spatial constraints, such as those discussed in [27], that are
able to incorporate stronger prior knowledge on cell structure and kinematics.
One novel challenge of building and inferring such high level models is varying
topology, both between datasets and over time.

In addition, further investigation should be conducted to take into account
the e�ects of cell division. Recently, Chavarria-Krauser and Schurr [8] attempted
to describe the process of root elongation using a model of cell division and
expansion. Cell division was modeled at a constant rate in thedivision zone ,
and during this time the cell extension rate is increasing linearly with cell length.

Here we only considered recovering locally rigid translations. A more realistic
model would also account for deformation, and would be important for longer-
term tracking. Since cell movements are essentially in 3D, we plan to extend
the current 2D motion estimation to 3D.

There are many possible directions for future work to improve the perfor-
mance of MRF models for plant cell tracking. One direction is to develop an
MRF model for joint segmentation and motion estimation, allowing for the
incorporation of non-isotropic and more accurate smoothing and observation
functions. Another direction would be to learn higher order MRF potentials.
However, the issue of reliable inference and high resource requirements would
be compounded. Our plan when investigating MRFs was to develop the global
smoothing approach by doing joint motion estimation and segmentation, an
approach that has had some success in other applications, e.g. [40].
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