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Abstract. The potential of optical projection tomography (OPT) to en-
hance colorectal polyp diagnosis is beginning to be explored. This paper
presents, to the best of our knowledge, the first study on automatic im-
age analysis of OPT images of colorectal polyps. 3D regions are classified
using the bag of visual words framework and support vector machines.
Independent subspace analysis is used to learn a domain-specific feature
dictionary. This is compared to the use of raw patches (after random
projection) and local binary patterns. Classification experiments (across
patients) at the patch level and at the region level are presented using
a set of 30 expert-annotated OPT images. Results show that accurate
classification of 3D OPT image regions is feasible using this approach;
regions of low-grade dysplasia and invasive cancer were discriminated
with approximately 90% accuracy.
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1 Introduction

Optical projection tomography is a relatively new 3D imaging modality [1]. It
is well suited to specimens between 1mm and 10mm across and has an effective
resolution of 5-10pum. The potential of OPT to enhance colorectal polyp diagnosis
is beginning to be explored [2]. Subtle changes have been noted when unstained
human tissue specimens have been scanned, reflecting their different cellular
composition.

Colorectal cancer (CRC) is the third most common cancer in the world and
the fourth most common cause of cancer death worldwide [3]. Screening has
lowered CRC mortality and detected large numbers of adenomas and polypoid
cancers. However, diagnosis using conventional 2D histopathology can exhibit
marked inter-observer variation, in the case of categorization of adenomas for
example [4].

This paper is concerned with automated classification of regions of 3D OPT
images of colorectal polyps. There is, to the best of our knowledge, no prior lit-
erature on automated image analysis of polyps using OPT. Specifically, we focus
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Fig. 1. OPT slices showing regions of (a) invasive cancer and (b) low-grade dysplasia.
(¢) Volume rendering of a polyp. (d) Annotated region of polyp in (c). (¢) Combined
volume rendering of the polyp and its annotation. (This figure is best viewed in color.)

here on the task of discriminating between regions of low-grade dysplasia and
invasive cancer. Fig. 1 shows example regions annotated by a histopathologist.
Regions of invasive cancer tend to have a more dense and homogeneous texture
than low-grade dysplasia (see (a) and (b) in Fig. 1).

We adopt the bag of visual words framework [5]. Each 3D image patch is
represented by extracting local features from it, quantising these features using
a learnt visual word dictionary, and histogramming them. We investigate the use
of unsupervised learning to obtain domain-specific features. Specifically, we use
forms of independent subspace learning (ISA), motivated by recent promising
results using ISA for video classification [6] and classification of H&E stained his-
tology images of Glioblastoma Multiforme [7]. We compare this approach with
using raw image patches (after dimensionality reduction using random projec-
tion [8]) and with local binary pattern descriptors in 3D [9-11]. These methods
represent three different categories of low-level feature extraction method, i.e.,
learning domain-specific features, use of raw image patches and use of hand-
crafted features.

2 Feature Extraction

2.1 Independent Subspace Analysis

The Independent Subspace Analysis (ISA) model is described as follows [12]. An
input image ! can be modelled as a linear combination of features:

ot =" N Al (1)
k i€S(k)

where S(k) is the set of indices i of A! that belongs to the k-th subspace. A
can be viewed as a non-linear image filter bank. This is a generalized version



of Independent Component Analysis (ICA). It is different from ICA in that
components are divided into subspaces; subspaces are assumed independent,
whereas components in the same subspace need not be independent of each
other. By maximizing independence with a grouping strategy, ISA models of
image patches resemble complex cells in visual cortex. Features learnt by ISA
show phase-and shift-invariant properties [12]. We investigate whether analysis
of 3D images with ISA would benefit from these properties as well.

We deploy a model developed for a visual action recognition problem [6]. In
this model, the non-linear filter A! is represented by a two-level network with
weights W and V respectively. The first level weights, W, represent filters within
subspaces. The second level weights, V', are fixed to represent the structure of
subspaces. Features extracted from this non-linear network can be expressed as:

S5 (:pt; W, V) = \/ZZZl V;;AZ:Zl ijx§)2 (2)

in which W can be learnt from a training set {«!,22,... 27} by optimising the
following:

X T m - t.
min thl Zizl si(z W, V), 3)
subject to WW7T = 1.

where n, d and m are the input dimensionality, number of linear components in
each subspace and number of subspaces respectively.
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Fig. 2. (a)-(d) Visualisations of 3D filters, W, learnt from 40,000 3D OPT image
patches using ISA. (Size: 19 x 19 x 19 voxels)

To apply ISA as a local feature extractor, we first learn weights of the two-
layer network, W, from a training set with fixed V' (by solving Eq.(3)). Then
final local descriptors are extracted by applying Eq.(2) to every 3D image patch.
Some of the learnt filters are visualised in Fig. 2. ISA network can also be stacked
in a convolutional manner, i.e., the output of first ISA model is the direct input
of second ISA. Here we propose to use convolutional ISA as a feature extraction
method for OPT images. We follow the implementation described in [6] as a
comparison to Bag of Words framework.

2.2 Raw Patches and Random Projection

In our raw 3D image patches method, intensity values are used as local features.
These can be of very high dimensionality. For example, in the case of 3D patch



features, the dimensionality is 10 x 10 x 10 = 1000 when sampling window
size is 10. Therefore we use randomly projected patches (RP) as a local feature
descriptor in our study. Random projection is a simple but powerful method for
dimensionality reduction [13]. It has been shown to be useful for texture analysis
in [8]. The original n-dimensional data X = {z'}7_, can be projected to a k-
dimensional subspace, using a random k X n matrix R whose columns have unit
lengths: .

XixT = RixnXnxr (4)

Distances between data points in n-dimensional space (X,,x7) are approximately
preserved in k-dimensional space (X' kxT). To construct the random projection
matrix R, we generate the elements r;; of R simply by drawing samples from a
Gaussian distribution with zero mean and unit variance. The complexity of this
process in Eq.(4) is only O(dkn).

2.3 3D Local Binary Patterns

Gray-scale and rotation-invariant LBP operators were introduced for 2D texture
analysis [10]. They have shown high discriminative power in certain medical
image analysis tasks [11, 14]. For a 2D image patch, the operator encodes a 3 x 3
neighbourhood of each pixel as a binary number. These binary numbers (called
LBP codes) correspond to primitive features of the image such as edges, corners
and spots. The histogram of LBP codes computed over the image patch can be
used as a texture descriptor.
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Fig. 3. Process of encoding local patches with volumetric LBP

We applied the LBP operator on three orthogonal planes for volumetric tex-
ture characterisation (VLBP) similarly to [9]. LBP features from the three or-
thogonal planes were concatenated to form the local feature vector as shown in
Fig 3.

3 Classification

Each 3D patch was represented by its bag-of-visual-words histogram. This his-
togram was formed by binning the feature vectors extracted from each sub-
window of a fixed size contained within the patch. Histogram bins corresponded



to the learnt visual word dictionary. The window size used for feature extrac-
tion is an important parameter. Given a central pixel located at (x,y,z) and
window size N, the neighbouring pixels are defined within the cubic region from
(e—(N-1)/2,y—(N—-1)/2,z—(N—-1)/2) to (x+(N—-1)/2,y+(N—-1)/2,2+
(N —1)/2).

Linear support vector machine (SVM) classifiers were trained on sets of 3D
patches sampled from the annotated OPT image regions. Testing was always
performed on OPT images not used for training. Thus the experiments reported
in this paper tested for inter-polyp generalisation. Two classification tasks are
considered:

Patch-level classification. Each 3D patch in the test region is classified
based on its histogram without taking into account other 3D patches in the
region.

Region-level classification. Each region annotated by the expert is classi-
fied as a whole based on all the patches it contains. Treating patch labels, y, as
conditionally independent given the region class, the task is to decide whether
the class, C, of a 3D annotated region is invasive cancer (C' = I) or low-grade
dysplasia (C' = L) based on the bag of labels, ), assigned to its patches by the
SVM. We assume equal class prior probabilities since our dataset contains equal
numbers of regions in each class. Therefore, the likelihood ratio in Eq.(5) is an
appropriate quantity on which to base the classification decision,

_ PIC=1)

"= P0i0-0) ?

Since we assume patch labels are conditionally independent, the likelihoods are
modelled as binomial distributions and the likelihood ratio can be written as:
_ (Ply=1C=0)"(P(y=LIC=1)" (6)
(P(y =1I|C=L)M(P(y = L|C=L)N

where M and N are the number of patches classified as invasive cancer and
low-grade dysplasia in the 3D region. Denoting invasive cancer as positive and
low-grade dysplasia as negative, the likelihood function P(y|C) is estimated by
counting the number of true positives, true negatives, false positives and false
negatives.The classification decision can be made by thresholding at log R = 0.

4 Experiments

Classification experiments were performed on a set of 30 volumetric OPT images
from 30 patients. These images were acquired using ultraviolet light and Cy3 dye.
Each image was of one colorectal polyp specimen and had 1024 x 1024 x 1024
voxels with aspect ratio of 1 : 1: 1. In 15 images, 3D regions judged to consist
entirely of low-grade dysplasia were annotated by a trained pathologist. In the
other 15 images, 3D regions judged to consist entirely of invasive cancer (IC) were
similarly annotated. The 3D regions were annotated as 2D regions in sequences
of 2D slices using ITK-SNAP [15]. A polyp typically extended across 700 ~ 800
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Fig. 4. (a)-(d) Patches sampled from invasive cancer regions. (e)-(h) Patches sampled
from low-grade dysplasia regions.

slices of a volumetric image. The 2D regions were delineated every 4 or 5 slices
and the region volume was interpolated in the intervening slices.

We randomly sampled 2000 non-overlapping 3D image patches with size 21 X
21 x 21 strictly within the annotated regions for each image. Fig 4 shows some
example patches.

In order to test the generalization capability of our approach across patients,
we separated the 3D patches sampled from different polyps during experiments.
Samples from one polyp were only presented in either training set or testing set.
We used the Matlab interface of L2-SVM][16] for the SVM classifiers.

In our experiments, four different feature extraction methods are tested: 1)
ISA with Bag of Words, denoted by ‘ISA+BoW’; 2) RP with Bag of Words,
denoted by ‘RP+BoW’; 3) VLBP with Bag of Words, denoted by ‘VLBP+BoW’
and 4) Convolutional ISA, denoted by ‘ConvISA’. In ConvISA method, output
of one ISA model serves as input basis of another ISA model. These two ISA in
ConvISA could be viewed as a local feature extractor and a feature encoder (in
analogy to BoW) respectively. Therefore we do not specifically embed ConvISA
in Bag of Words framework. Instead the output feature code of ConvISA is
directly input to the classifier.

For the RP method we reduced the dimensionality to 150 using random
projection if the dimensionality was greater than 150. In convolutional ISA and
ISA with Bag of Words methods, the dimensionanlity was reduced according the
same rule but using PCA (following [6]). For all Bag of Words encoding processes,
visual word dictionaries were learnt using k-means clustering with k fixed to 200.
To form a fair comparison, the second level ISA features in convolutional ISA
were also set to 200.

4.1 Results
TP+ TN

P+ N
where TP,TN, P, N denote number of true positives, true negatives, and total

number of positive and negative samples respectively. Table 1 reports classifi-
cation rates when using the different feature descriptors with various sizes of

Patch-level classification. Classification accuracy is calculated as



feature window. The accuracies are averaged over 10-fold validation as recom-
mended by [17]. We randomly divided the dataset into 10 folds, with 3 images
per fold. For each fold evaluation, we trained models with 9 folds and tested on
the remaining one. With non-overlapping random sampling, for each evaluation
routine the classifier was trained with about 40,000 3D patches and tested on
4000 3D patches.

RP+BoW ISA+BoW ConvISA VLBP+BoW
63.0+6.9 52.9+7.8 57.0£6.3 50.8+9.0
69.8£5.8 53.0£79 68.5+42 73.1+3.5
72.44+5.1 61.1£6.0 63.0+3.6 70.1+4.0
9(73.4+3.365.9+5.2 71.0£3.066.8+4.7
11{72.24+3.4 66.9+5.1 65.3+£3.9 69.7+t4.3
13|70.1 3.5 69.4+5.2 68.8+3.6 68.24+4.7
15(68.1 3.2 68.9+4.9 67.0+£3.8 68.44+2.9
17(62.94+3.5 72.0£4.366.9+3.9 67.5+£3.5
19159.0+ 3.4 67.4+5.3 56.8+6.6 65.94+ 3.3
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Table 1. Classification accuracies (%) + standard errors at different feature window
sizes ranging from 3 to 19.

There were no significant differences between the best accuracies of these
methods. For the window size settings that gave the highest accuracies for each
method, we compare sensitivity and specificity in Table 2, where sensitivity

= ificity =
= — ificity = —.
P ; specificity N

Sensitivity Specificity Accuracy
RP+BoW |67.6+6.2 78.9+3.4 73.4+£3.3
ISA+BoW [86.3+£2.0 57.0+£6.9 72.0£4.3
ConvISA 62.1+4.5 77.2+£4.0 71.0£3.0
VLBP+BoW|84.6 £2.6 59.8+5.0 73.1 £ 3.5

Table 2. Sensitivities (%) and specificities (%) %+ standard errors for the window sizes
that gave the highest accuracies.

Region-level classification. We evaluated region classification using the like-
lihood ratio test of Eq.(6) with a threshold log R = 0. The patch labels from
patch-level classification (described above) were used in this evaluation. Fig. 5
reports these results.

4.2 Discussion

At patch level, for RP and ConvISA descriptors, the best accuracies were gen-
erated at window size 9 x 9 x 9. VLBP tended to have better performance when
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Fig. 5. Classification accuracies based on annotated regions depending on sampling
window size.

window size was smaller while ISA had the opposite trend. This indicates that
VLBP is more powerful for capturing local textural details while ISA is able to
generate discriminative features when the feature window is relatively large. The
RP method shows notable results as it takes image intensity values directly as
input. The highest accuracies for these methods are very close, but sensitivities
and specificities of these methods are quite different. Overall, the results indicate
that using raw 3D patches directly as features has equal discriminative power
compared with hand-designed descriptors (VLBP) and automatically learnt de-
scriptors (ISA). This finding on our OPT dataset is consistent with studies on
other applications of texture analysis [5]. There was no advantage to sophisti-
cated descriptors such as ISA and VLBP for patch classifications in these OPT
images. The RP method can serve as an effective local feature extractor.

At region level, the trends of classification accuracies are very similar to
the trends of accuracies at patch level (discussed above). Good performance
in patch-level classification usually leads to good performance in region-level
classification. RP gave classification accuracy of 90% with window sizes of 9 x
9 x 9 or 11 x 11 x 11. ConvISA gave a slightly better accuracy of 93% with
13 x 13 x 13 windows albeit at greater computational expense. Almost at any
sampling window size, classification accuracies at region level are higher than at
patch level. This is because region-level classification combines information over
a larger spatial extent than patch-level classification.

Our classification problem has similarities to the scenario in [7]. However, as
well as differences in data dimensionality and modality, there is a clear distinction
in that we evaluate cross patient classification at both patch level and region
level. In [7], training and testing patches might come from the same patients.



5 Conclusion and Future Work

We compared four methods for discriminating between invasive cancer and low-
grade dysplasia in OPT images of colorectal polyps. Results showed that au-
tomatic classification of annotated regions in OPT images is feasible. In future
we would extend this work in three directions. 1) combining different local fea-
ture sets for feature learning; 2) experimenting with more tissue classes such
as different grades of dysplasia, and 3) incorporating positional and contextual
information, for example using autocontext or conditional random field models,
to improve classification and segmentation of colorectal polyps in OPT.
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