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Abstract. Cervical cancer screening programmes are currently based upon the microscopic
examination of Papanicolaou smears. These contain 2 wide variety of cell types and non-cell
artefacts. Extensive research effort has been devoted to developing automated cytology systems
to analyse samples such as these. A useful step in any image analysis system for automated
cytology is to detect interesting objects for detailed analysis as most of the area covered by a
slide does not contain objects of diagnostic significance. Previous approaches to this specimen
enrichment task have included methods based on thresholding, mathematical morphology and
linear combinations of handcrafted image filters. An lternative approach is proposed which
employs artificial neural networks applied directly to low-resolution images of conventionally
prepared Papanicolaou smears. Training sets of labelled image pixels were formed using a
previously developed high-resolution segmentation algorithm. Feed-forward networks with
localised connectivity and hard weight-sharing were used t0 ensure that the features extracted
were invariant under both translation and rotation, and to limit the number of free parameters in
the network, thus promoting generalisation. In prelimi experiments, feed-forward neural
networks were able to leam to locate abnormal cell nuclei and to enrich the specimen by
rejecting uninteresting cells and background clutter.

1. Cervical smear inspection

The microscopic examination of a cytological sample, such as a cervical smear, often
involves assessing in excess of 50,000 cells. This is a tedious and labour-intensive
undertaking and one not without €rror. It is for these reasons that extensive research effort
has been devoted to the development of partially or fully automated cytology systems.
Previous research in this area has been reviewed elsewhere (Banda-Gamboa et al. 1992).

Papanicolaou smears typically contain between 10,000 and 00,000 cells (Tucker 1976).
These cells comprise intermediate and superficial cells from the squamous epithelium of the
cervix as well as leukocytes (white blood cells), other cells such as parabasal and metaplastic
cells and various other artefacts. All the cellular material on a slide must be inspected under a
microscope in the search for any abnormalities. Approximately 5% of smears contain some
visually abnormal cells which might indicate a pre-cancerous Or cancerous condition.

Figure 1 shows images of abnormal and normal cells taken from several different
cervical smears. The abnormal cells have enlarged nuclei and relatively small cytoplasms. In
contrast, normal superficial cells have small, dark nuclei and relatively large, polygonal
cytoplasms. Normal intermediate cells have larger nuclei than superficial cells. Leukocytes

are small highly contrasted objects.
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Figure 1. Intensity images of cellular material from conventional cervical smears.

The conventional Papanicolaou slide preparation used for manual screening is not well
suited to automated analysis. Staining solutions and procedures vary widely. In addition,
conventional smears are multi-layered with cells clustered together and overlapping one
another. Alternative monolayer (or “thin') preparations have been developed in which cells
appear isolated and within the same optical plane. Alternative stains, such as Acriflavine-
Feulgen which renders cytoplasmic material invisible and nuclei highly contrasted, have also
been used (e.g. Meyer 1979). Such preparations simplify image analysis but their
introduction into a well established screening programme would be costly and disruptive. A
system capable of inspecting conventional Papanicolaou smears would be more easily
integrated into the programmes. The experiments described in this paper have been performed
using routinely prepared smears.

Many automated systems adopt a dual-resolution approach to the inspection of a slide.
An initial low-resolution scan is used to locate cellular objects and to discard those cells
which are clearly of no diagnostic importance. This results in a much smaller, enriched cell
specimen from which a reliable diagnosis can be made. The enriched specimen is subjected to
more detailed analysis at increased resolution (see e.g. McKenna et al . 1993). This involves
either searching for individual abnormal cells (‘rare event detection’) or analysing the
enriched cell population as a whole in order to detect shifts in the cell population
("malignancy associated changes').

This paper is concerned with the low-resolution scan for locating cells and performing
specimen enrichment. It is organised as follows. The specimen enrichment problem and
previously published methods are described in more detail in the next section. In section 3,
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the proposed method is introduced, suitable weight-sharing networks are discussed and a -
procedure for the collection of labelled training data is described. Section 4 presents results
from preliminary experiments and section S contains concluding remarks and suggestions for
further work.

2. Previous approaches to the specimen enrichment problem

The specimen enrichment process aims to discard material not useful for making a diagnosis
such as background, normal superficial cells and leukocytes. Enough suspicious material
should be retained to allow abnormalities to be detected. Suspicious material does not
necessarily mean only visually abnormal cells: subvisual markers of abnormality have also
been identified in intermediate cells (Zahniser et al. 1991).

Previous approaches to object location and specimen enrichment have been based upon
thresholding techniques, iterative image transformations from mathematical morphology and
combinations of handcrafted image filters. This section briefly reviews these methods.

2.1 Thresholding techniques

Early attempts at cell location and specimen enrichment employed thresholding techniques.
These were typically applied to images with a pixel resolution of 4 microns. Cell nuclei have
been detected using thresholds determined from peaks in the grey-level frequency-of-
occurrence and transition histograms (Taylor et al. 1975). An adaptive thresholding method
has been used to detect interesting objects while compensating for variations in intensity due
to shading and staining. In this method, the threshold value was set equal to the mean
intensity of neighbouring background pixels plus some user-defined constant (Tucker 1976).
The CYBEST systems employed dynamic thresholding using differential histograms. Errors
were due to irregular staining, clumped cells, leukocytes and a few missed abnormal cells
(Watanabe et al. 1976, Tanaka et al. 1982, 1987).

The use of an Acriflavine-Feulgen stain results in highly contrasted images and allows
almost all nuclei to be detected using a fixed intensity threshold. An erosion function can then
be used to reject nuclei too small to be suspicious (Al and Ploem 1979). Pycock and Taylor
performed cell searching on specially prepared monodisperse hematoxylin stained samples
(Pycock and Taylor 1980). Thresholds were selected using syntactic histogram analysis and
were related to the dominant peak and to an estimate of mean cytoplasmic intensity in order to
accommodate variations in illumination and cytoplasmic staining respectively. A constant
width of grey-levels around the peak was classified as background. Darker pixels to a fixed
fraction of the mean background grey-level were classified as cytoplasm. A nuclei detection
threshold was then set to a fixed fraction of the mean cytoplasm grey-level. Finally, contours
were traced around the detected nuclear regions.

2.2 Mathematical morphology

Iterative image transformations based on mathematical morphology (Serra 1989) have also
been used to detect suspicious cells but at a greater resolution than other methods. Meyer
used samples stained using Acriflavine-Feulgen and analysed them at a resolution of 1 micron
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(Meyer 1979). The method relied upon “top-hat' functions for detecting contrasted objects of
various sizes. One such function detected suspicious cells along with granulocytes and
~ clumped leukocytes, a second function discarded highly contrasted, isolated leukocytes and a
third discarded clumped leukocytes. Iterative image transformations for the segmentation and
separation of overlapping nuclei have also been developed (Meyer 1986). The use of
mathematical morphology with conventional Papanicolaou stained smears has been reported
recently (Lee et al. 1992). The images used contained 8-bit pixels at an increased resolution
of 0.55 microns. Transformations for small object recognition and hole filling were
described. They were implemented using custom-built gate array processors.

A two-stage erosion process has been used to eliminate small objects and objects which
have a lower grey-level than their background (Erhardt et al. 1980). This suppressed dark
structures with a width of less than 6 microns in any direction. Nearly all leukocytes were
eliminated. The images used had 0.5 micron, 8-bit pixels.

2.3 Handcrafted image filters

Poulsen developed a parallel algorithm for locating free-lying suspicious cells in
conventionally prepared Papanicolaou smears at a resolution of 4 microns (Poulsen 1973).
The algorithm was parallel in the sense that each pixel was analysed in the same way and
without influence from the result of processing adjacent pixels. A set of filters was applied to
each pixel. Each of these filters was an annular ring, either filled (for locating cell nuclei) or
unfilled (for locating cytoplasm). Linear combinations of the filter results were then computed
by taking weighted sums and applying thresholds. The resulting features were then combined
using logical operators. The algorithm's parameters were selected interactively by the user
through a series of trial and error experiments. Those objects detected consisted of a dark
nucleus surrounded by a medium dense area (cytoplasm) on a clean background. The
algorithm was further developed by a group at Uppsala University in Sweden (Bengtsson
1987, Nordin 1989). A working prototype which kept up with "continuous scan rates of
several megahertz” was reported.

A similar approach to that of Poulsen used templates consisting of horizontal, vertical
and diagonal spokes radiating from a central pixel (Read et al. 1979). A template specification
defined whether or not a pixel at a set distance from the central pixel was required to contrast
with the central pixel. An additional parameter controlled the number of template spokes
which had to match in order for the template to match. This parameter allowed templates to be
developed for detecting highly irregular objects. A logical combination of as many as 15
templates determined whether or not the central pixel was of interest. The method was applied
to images at a TMsolution of 3 microns. The PAPNET system (Neuromedical Systems, Inc.
. 1991) used morphologic techniques to locate potentially suspicious objects in routinely

prepared Papanicolaou smears at a resolution of 1 micron. Between 1,000 and 10,000 such
objects were detected. These operations were implemented on a parallel pipelined computer.
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Figure 2. A slice through a network. Dark lines indicate those parts of the network
involved in processing a particular pixel.

3. Artificial neural networks for specimen enrichment

The aim of this research is to develop a system for specimen enrichment using artificial neural
networks. The learning capabilities of neural networks should enable them to compute
appropriate parameters for modelling the appearance of cells. Their ability to generalise makes
them good candidates for analysing noisy images. Once trained they are capable of delivering
fast results (especially if their parallel structure is exploited in implementation) and when
dealing with slides containing as many as 200,000 cells speed is important. The proposed
method has more in common with Poulsen's method (see section 2.3) than with the
morphological techniques published by Meyer (see section 2.2) and should not require
images of the relatively high resolution used by the latter.

3.'1 Neural networks with annular weight-sharing

The proposed specimen enrichment method employs feed-forward artificial neural networks
trained using error-backpropagation (Rumelhart ez al. 1986). Each network receives as its
input an intensity image of a scene from a cervical smear and outputs a binary image
indicating where any areas of interest lie within the input image. The networks were tailored
to the application using hard weight-sharing and localised connectivity. All hidden layer and
output layer units had circular receptive fields and all connections at an equal radius from a
receptive field's centre were shared. This ensured that the features extracted by a network
possessed rotational invariance and it forced the units to learn weight masks consisting of
annular rings. Translation invariance was obtained by forcing all units in a given layer to
share their weights. Figure 2 depicts a slice through such a network. Darker connections
indicate which units exert influence upon the output for a particular input pixel. Figure 3
shows a similar network in three dimensions. This diagram illustrates how to extend the
network of figure 2 by adding extra slabs of hidden units. All units within a slab share their
weights but units in different slabs learn different weights.
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Figure 3. A weight-sharing network with two slabs of hidden units.

3.2 Data sets

The images used were obtained using a CCD/RGB camera mounted on a microscope fitted

with a x100 oil immersion objective. Although colour digitised images were obtained, only

the intensity frame was used in these experiments. Images originally consisted of 512x512 §-
bit pixels at a resolution of 0.15um. All images were resampled to a resolution of 24pum
using pixel averaging. In order for supervised learning to be possible labelled data was
required to form a training set. Labelled images were obtained using a previously developed
segmentation technique for high-resolution images of isolated cervical cells (Parianos 1991).
This technique was based upon the converging squares algorithm which searches for points
of maximum value within regions of maximum intensity in an image (O'Gorman and
Sanderson 1983). Binary segmentation masks were thus computed for images of single,
isolated abnormal and normal cells. Both the original images and their corresponding
segmentation masks were then resampled at low resolution and pixels were selected to form
the training pairs.

There were many more uninteresting pixels of background and cytoplasm in these
images than there were of cell nuclei. All classes of pixel, however, should have equal
representation in the training set. Initially, an appropriately sized sample of the over-
represented class was selected at random for inclusion in the training set. This approach was
sufficient for the initial experiments on abnormal nuclei detection which will be described in
section 4.1. A more sophisticated approach was needed, however, for the specimen
enrichment experiments described in section 4.2. This involved training a network on a
randomly selected training set as before. After training, the network was tested on the
remaining data from the over-represented class. A proportion of the misclassified patterns
were then brought into the training set to replace some of the previously used patterns and
training was continued. This technique resulted in improved performance by moving hard-to-
classify background and cytoplasm pixels lying near the true decision boundaries into the
training set. The effect was to minimise the number of erroneously detected objects.
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Table 1. Results for nuclei detection networks

Network Weights Connections Nuclei | False detections
(excl. biases) per pixel detected
69-1 5 69 108 (98%) 2 (4 pixels)
69-9x1-1 6 45 108 (98%) 2 (3 pixels)
Ensemble 11 114 108 (98%) 1 (1 pixel)
Ensemble + 11 114 108 (98%) 0
post-process _

4. Preliminary experiments
4.1 Abnormal nuclei detection

The first task given to the neural network was to scan images containing only abnommal cells
and to detect the cells' nuclei. The training set was compiled using 52 images of isolated
abnormal cells taken from 6 smears. It contained 1115 nuclear patterns and 1115 non-nuclear
pattems. The test set consisted of 50 images taken from S smears not used in the training set
and contained 110 abnommal cells. Test set results are given in table 1. The notation used
shows the number of units in each layer of a network involved in classifying an image pixel.
Thus a network arrangement of '69-9x2-1' describes a network with 69 inputs, 1 output and
2 hidden layer slabs of 9 units each.

The first network trained had no hidden layer. Its units had receptive fields with
diameters of 9 pixels corresponding to 69 inputs and 1 output per image pixel. A second
network with a hidden layer slab of 9 units was also trained. Both these networks detected
98% of the abnormal nuclei as well as 2 other erroneous objects corresponding to small areas
of dark cytoplasm. Fortunately, the networks' errors did not always coincide so that by
combining their outputs only a single pixel object was wrongly detected. A simple post-
processing step which involved discarding single pixel objects resulted in no erroneous
objects being detected. The 2 abnormal nuclei missed by the networks were poorly stained.

4.2 Specimen enrichment

The second task was to scan images containing both normal and abnormal cells and to
perform a specimen enrichment. This involved detecting abnormal nuclei whilst discarding as
many normal cells and other objects as possible.

Consider training a single network on the two-class problem to differentiate abnormal
nuclei from all uninteresting material. A problem with this is deciding in what proportions to
represent the various objects (e.g. superficial nuclei, cytoplasm, background) in the training
set. The task could be recast as a multi-class problem with, for example, an abnormal nuclei
class, a superficial nuclei class and a background class. This, however, would unnecessarily
require the network to differentiate between superficial nuclei and background. Rather than
train a single network to perform specimen enrichment, the problem was divided into two
sub-problems performed by two different networks.
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Table 2. Results for the specimen enrichment networks

Networks Weights Connect/ | Abnormal Superficial Cytoplasm
(excl. biases) pixel nuclei nuclei
A 12 92 66 (60%) 35 (36%)
A&B 17 - 161 44 (40%) 3(3%)
A&B+ 17 161 31 (28%) 0 (0%)
post-processing

(Table 2 gives the number and type of objects detected by the specimen enrichment networks. Network A (69-
9x2-1) was trained on abnormal nuclei vs. background/cytoplasm from images of superficial cells. Network B
(69-1) was trained on abnormal nuclei vs. superficial nuclei. Post-processing involved discarding isolated

output pixels.)

Network A was trained to differentiate between abnormal nuclei and cytoplasmiclbackground
material. Network B was trained to differentiate between abnormal nuclei and superficial cell
nuclei. The output images from networks A and B were then combined using the logical
AND operator. A pixel was thus judged to belong to a suspicious nucleus only if both
networks judged this to be the case.

Network A was trained using 1115 abnormal nuclear pixels and 1115 iteratively
selected cytoplasm/background pixels from images of superficial cells. Network B was
trained on 279 abnormal nuclear pixels and 279 superficial nuclear pixels. These training data
were gathered from 11 different cervical smears. The networks were tested on 98 images
taken from 7 smears not used in the training set and containing 110 abnormal cells, 97
superficial cells, 6 intermediate cells and 5 leukocytes. Test set results are shown in table 2.

Network A alone was able to detect 60% of abnormal nuclei. In addition it also

~detected 36% of the superficial cell nuclei and 8 areas of dark cytoplasm. Combining

networks A and B resulted in 40% of abnormal nuclei and just 5 erroneous objects being
detected. The post-processing step which discarded single pixel objects eliminated false
detections whilst detecting 28% of abnormal nuclei.

4.3 Examining the weights

It is useful to be able to examine the weights learned in order to understand the criteria used
by the network. Figure 4 shows two examples of weight masks learned by first-layer units in
the specimen enrichment networks A and B. A dark pixel indicates a positive weight and a
light pixel a negative weight. The border of uniform shade has been added to each mask to
indicate the grey-level which would denote a weight of zero. The central pixel indicates the
strength of the weight to the pixel to be classified. The surrounding pixels represent weights
on the weight-sharing connections approximating annular rings.

The mask from network A is clearly used to search for dark objects a few pixels in
diameter surrounded by a lighter background (i.e. cell nuclei). The mask from network B is
used to differentiate between superficial cell nuclei and abnormal nuclei. The output from this
unit is positive when an abnormal nucleus is detected. The bright central pixel indicates that
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Figure 4. Example weight masks from specimen enrichment networks A and B.

the small nuclei of superficial cells are usually darker than the nuclei of abnormal cells. The
dark ring two pixels from the centre can be interpreted as encoding the information that
abnormal nuclei have at least this diameter.

5. Concluding remarks

The proposed method has much in common with the approach introduced by Poulsen. His
algorithm relied upon a user to decide how to combine a series of handcrafted image filters
consisting of filled and unfilled annular rings (Poulsen 1973, Nordin 1989). The use of a
back-propagation neural network has alleviated the need for trial-and-error experimentation
by automating the learning of appropriate filters and filter combinations.

The networks coped well with the nuclei detection task. The fact that two abnormal
nuclei were missed was not significant. The main concern was to minimise the false detection
rate. This was because the vast majority of material on a smear is not of interest. If the false
detection rate is not kept very low then the resulting specimen will be too large for detailed
analysis.

The networks trained to perform specimen enrichment were able to discard all
superficial cells, cytoplasmic material and background clutter as well as the few intermediate
cells and leukocytes appearing in the test set. The networks' ability to keep the false detection
rate very low has demonstrated the promise of this approach to specimen enrichment.
Although it is acceptable to discard some of the abnormal nuclei during specimen enrichment,
the detection rate of 28% is perhaps too low to be reliable. These experiments were,
however, preliminary and it is hoped that future research will increase this rate.

There are several ways in which performance might be improved. Experimentation
with various network topologies has so far been limited. In particular, increasing the
receptive field size and using hidden layer slabs with various sizes of receptive field could
yield improvements. The images were acquired in colour and as yet only the intensity
information has been utilised. Future work will involve expanding the training set to better
represent the wide range of material occurring in cervical smears. The method also needs to

be tested on a wider range of images.



214 Neural Computing Research and Applications II

References

AlTand Ploem J S 1979 Detection of suspicious cells and rejection of artefacts in cervical
cytology using the Leydentelevision analysis system. J.Histochem. Cytochem. 27
629-634.
Banda-Gamboa H, Ricketts I W, Cairns A Y, Hussein K A 1992 Experimental prescreening
systems for automated cervical cytology - a review, Analyt. Cell. Pathology 4 25-48
BengtssonE 1987 Themeasuringofcellfeatures.Analyt. Quant. Cytol. 9 212-217
Erhardt R, Reinhardt E R, Scblipf W, Bloss W H 1980 FAZYTAN: a system for fast
automated cell segmentation, cell image analysis and feature extraction based on TV-
image pickup and parallel processing. Analyt. Quant. Cyrol. 2 25-40
Neuromedical Systems, Inc. 1991 The PAPNETTM cytological screening system. In: Data
on automated cytology systems as submitted by tbeir developers. Analyt. Quant.
Cytol. Histol. 13 300-306
Lee J S J, Bannister W I, Kuan L C, Baltels P H, Nelson A C 1992 A processing strategy
or automated Papanicolaou smear screening. Analyt. Quant. Cytol. Histol. 14 415-
425
McKenna S J, Ricketts I W, Caims A Y, Hussein K A 1993 A comparison of neural network
arcbitectures for cervical cell classification. Proc. 3rd . CANN. (Brighton, U.K.)
105-109
Meyer F 1979 Iterative image transformations for an automatic screening of cervical smears,
J. Histochem.Cytochem. 27 128-135
Meyer F 1986 Automatic screening of cytological specimens. Computer Vision, Graphics,
and Image Processing 35 356-369
Nordin B 1989 The development of an automatic prescreener for the early detection of
cervical cancer: algorithms and implementation. Ph.D. Thesis, University of Uppsala,
Uppsala, Sweden
O’Gorman L and Sanderson A C 1983 The converging squares algorithm: an efficient
multidimensional peak picking method. LE.E.E. Int. Conf. on acoustics, speech and
signal processing 1 112-115

Parianos E 1991 Automatic segmentation of the nuclei in cervical cell images. M.Sc. Thesis,
University of Dundee, Scotland

Poulsen R S 1973 Automated prescreening of cervical cytology specimens. Ph.D. Thesis,
McGill University, Montreal

Pycock D and Taylor C J 1980 Use of the MAGISCAN image analyser in automated uterine
cancer cytology. Analyt. Quant. Cytol. 2 195-202

Read J § , Borovec R T, Bartels P H, Bibbo M, Puls J H, Reale F R, Taylor J, Wied G L
1979 A fast image processor for locating cell nuclei in uterine specimens. In: Pressman
N J and Wied G. L. (eds.) The automation of cancer cytology and cell image analysis,
Tutorials of Cytology (Chicago) 143-155

Rumelhart D E, Hinton G E and Williams R J 1986 Learning internal representations by
error propagation. In: Rumelhart D E, McClelland J L & the PDP Research Group,
Parallel Distributed Processing 1 318-362

Serra J 1989 Image analysis and mathematical morphology 1, Academic Press

Tanaka N, Ueno T, Ikeda H, Ishikawa A, Konoike K, Shimaoka Y, Yamauchi K, Hosoi S,
Okamoto Y, Tsunekawa S 1982 CYBEST Model 3: Automated cytologic screening




Part Two: Applications 215

system for uterine cancer utilizing image analysis processing. Analyt. Quant. Cytol. 4
279-285

Tanaka N, Ueno T, Ikeda H, Ishikawa A, Yamauchi K, Okamoto Y, Hosoi S 1987
CYBEST Model 4: Automated cytologic screening system for uterine cancer utilizing
image analysis processing. Analyt. Quant. Cytol. Histol. 9 449-454

Taylor J, Bahr G F, Bartels P H, Bibbo M, Richards D L, Wied G L 1975 Development and
evaluation of automatic nucleus finding routines: thresholding of cervical cytology
images. Acta Cytologica 19 289-298

Tucker JH 1976 CERVISCAN - An image analysis system for experiments in automatic
cervical smear prescreening. Comp. Biomed. Res. 9 93-107

Watanabe S, Imasato Y, Genchi H, Tanaka N, Kashida R 1976 A Pap smear prescreening
system: CYBEST. In: Preston K and Onoe M (eds.),Digital Processing of Biomedical
Images, Plenum Press, 227-241

Zahniser D J, Wong K L, Brenner J F, Ball H G, Garcia G L and Hutchinson M L 1991
Contextual analysis and intermediate cell markers enhance high-resolution cell image
analysis for automated cervical smear diagnosis, Cytometry 12 10-14




