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ABSTRACT

Large-scale screening programmes are operating 1o
reduce the incidence and morality rate of cervical
cancer, a disease which is preventable if detected
at the pre-cancerous stage. Screening is based upon
the manual inspection of Papanicolaou smears. This
is a highly demanding and labour-intensive task and
for over thirty years there has been considerable in-
terest in automating the process.

The authors are investigating the use of various neu-
ral network architectures for the analysis and clas-
sification of smear scenes. A feature space was
derived from the magnitude of the Fourier transform
using a wedge-ring arrangement. The features ob-
tained were invariant to translation and rotation.
Neural nets were then used to both reduce dimen-
sionality and to perform the classification. An ex-
pertly verified database containing over 2000 high-
resolution cell images was used to measure the per-
formance of the nets.

The single-layer perceptron, multi-layer percep-
trons and the constructive algorithm of Fahlman and
Lebiere were each used as classifiers. The effect of
feature extraction nets for pre-processing the fea-
ture space was. also investigated. Performances
were compared in terms of speed, network size and
ability to learn and generalise. In addition, classifi-
cation by a parametric Bayesian classifier allowed
comparison with a statistical method. Good classifi-
cation results were obtained.

AUTOMATED PRESCREENING OF
CERVICAL SMEARS

Several developed countries have introduced
screening programmes in an attempt to reduce
mortalities from cervical cancer. Analysis of data
from some of the largest programmes indicates that
screening reduces the probability of a woman
developing invasive cervical cancer by approximately
90%., Eddy (1). Screening is based upon the
microscopic examination of Papanicolaou smears
(samples of cellular material collected from the
cervix). Approximately four million smears are
produced in the UK. alone each year and a single
smear contains as many as 200,000 cells. Only 5% of

these smears contain any abnormal cells and many of
these will have relatively few such cells. A trained
cytotechnician can typically examine 50-80 smears
in a day taking 5-10 minutes per smear. The task is a
tedious and fatiguing one. Automatic removal of the
bulk of healthy specimens from a cytology
laboratory’s workload would result in large savings
allowing the cytologists to concentrate their efforts
on the diagnosis of suspect smears.

The earliest attempts to automatically differentiate
between normal and abnormal cervical cells were
made in the 1950’s and the possibility of automating
prescreening has been researched extensively in the
intervening years. An  historical overview of
developments can be found in Banda-Gamboa et al.
(2). Several systems using image processing and
other artificial intelligence techniques such as
expert systems and neural networks are currently
under development in the U.S.A. (3). In order to be
accepted into cytology laboratories an automated
prescreener must be fast, accurate and reliable.
Neural network technology is well suited to such a
task, allowing highly parallel, accurate and robust
systems to be constructed.

Due to the huge amount of information contained in
each smear, a dual-resolution strategy has been
adopted (by both human and automated screeners).
Each smear is first scanned at low resolution and
areas of interest which might contain abnormal cells
are then identified. These areas of interest are
rescanned and analysed at an increased resolution.
This paper is concened only with the high
resolution analysis of previously identified areas of
interest.

THE CELL IMAGE DATABASE

Experiments were conducted using a database of
greyscale images consisting of 256x256 7-bit pixels.
These images were obtained from routinely prepared
Papanicolaou smears using a Hitachi b/w CCTV
camera mounted on a microscope fitted with a x100
oil immersion objective. An experienced cytologist
located and classified the cells captured. Each image
used in this study contained a single nucleus with
part or all of its associated cytoplasm. Cytoplasmic
material from other cells and additional artifacts



were also often present. A total of 1404
images was used. Half of these contained normal
cells at various stages of maturity (superficial,
intermediate and parabasal cells) while the
remaining half contained cells with varying degrees
of abnormality (mildly, moderately and severely
dyskaryotic cells). An image set containing 50% of
these images was used to train various classifiers.
The remaining images were then used to test their
ability to generalise.

FEATURE EXTRACTION IN THE
FREQUENCY DOMAIN

After correction for shading effects (due to uneven
illumination and non-uniform sensitivity of the
sensing device) images were transformed to the
frequency domain by applying a 2D discrete Fourier
transform. This yielded a representation invariant
under translation. A set of 80 features was then
extracted from each frequency domain image using a
ring-wedge arrangement. These features measured
energy and texture of the frequency domain image.
Details of this feature extraction process may be
found elsewhere, Banda-Gamboa (4). Classification
of images as either normal or abnormal was
subsequently based upon these 80 features.

An apparent advantage to this method is that no
high-resolution segmentation of the image is used in
order to extract the features. High-resolution
segmentation of cells has been the most difficult
and the most important step in cervical smear
screening systems with inaccurate segmentation
leading to the extraction of erronecous features. In
contrast, the features extracted here are not
dependent upon accurate segmentation.

CLASSIFICATION

Initially, 2 parametric Bayesian classifier was used
to classify cell images as either normal or
abnormal. Subsequently, it was decided to compare
it with various neural network classifiers with the
dual aims of improving classification accuracy and
providing a benchmarking study for the different
neural network architectures used.

Parametric Bayes classifier

This classifier is based upon Bayes’ rule which as-
signs an object to the class with the highest condi-
tional probability, Duda and Hart (5). It calculates
a linear discriminant function so as to minimise the
number of misclassifications under the assumptions
that the feature vector is drawn from a multivariate
normal distribution and that all classes have identi-
cal covariance matrices.
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Back-propagation classifiers

Fully-connected feedforward neural networks were
trained using error back-propagation, Rumelhart et
al. (6). Both single layer networks (SLPs) and
multi-layer networks with one or two hidden layers
(MLPs) were used. Network units had symmetric
sigmoid activation functions with range (-0.5,0.5).
All input and output patterns were scaled in the
range [-0.5,0.5]. A value of 0.1 was added to the
derivative of each unit’s activation function in order
to avoid derivatives of zero (‘flat spots’), Fahlman
(7). These alterations were found to significantly
decrease training times. A learning rate of 0.003 and
a momentum term of 09 were used. These
parameters were set in accordance with the rule of
Eaton and Olivier (8) which was found to result in
good convergence.

Cascade-correlation

The cascade-correlation algorithm of Fahlman and
Lebiere (9) is a constructive algorithm which starts
life as a single layer network to which hidden units
are added one by one until a sufficiently low error
is achieved. It attempts to automatically generate a
network with a suitable topology and thus avoid the
need for lengthy experimentaion with different
numbers of hidden units and layers usually
associated with the use of multi-layer networks.
Al  training is performed using Fahlman’s
quickprop method.

Initial benchmarks suggested that cascade-
correlation was considerably faster to train than
standard back-propagation and resulted in networks
with nearly as few hidden units as the best size of
back-propagation network found (9). In a series of
experiments on real-world pattern classification
tasks reported in Yang and Honavar (10), cascade-
correlation was found to learn faster than back-
propagation but did not generalise as well on two
out of the three data sets studied. It did, however,
generalise better than back-propagation on the third
data set for which no hidden units were needed.

Cascade-correlation networks with sigmoid
activation functions were trained. Pools of 8
candidate units were used. An offset of 0.1 was
added to the derivative of each unit’s activation
function in order to avoid flat spots. After
experimentation with different parameter values the
learning rate was set to 0.75, input weight decay to
0.0, output weight decay to 0.0001, patience to 8
and weight change thresholds to 0.001. A maximum
of 10 hidden units were allowed to be added.
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TABLE 1 - Comparison of network performance (Values in parenth indicate standard deviation
# weights Avg. epochs to train  Avg. test set error(%) Min. test set error(%)

SLP (80-1) 81 1745 (54) 10.6 (0.1) 10.4

Cascade-corr. 502 (205) 1963 (550) 115 (1.0) 101

Bayesian - - 8.7 8.7

MLP {80-6-2-1) 503 2180 (1601) 7.3 (0.4) 6.7

MLP (80-6-1) 493 1965 (1051) 71 (0.3) 6.6

PERFORMANCE COMPARISONS

Each of the network architectures was trained 10
times with different initial random weights in the
interval [-0.3,0.3]. In the case of MLPs with one
hidden layer, 6 units was found, after experimenta-
tion, to be a good size for the hidden layer. MLPs
with a second hidden layer of 2 units were also
trained.

Table 1 compares the performance of the various
classifiers in terms of the number of connection
weights, the number of iterations through the train-
ing set (epochs) required and most importantly their
ability to generalise on the test set. Classification
accuracy was measured in terms of the percentage of
test set images correctly classified. The values given
in parentheses indicate standard deviations. It should
be noted that the set of 80 features used was arrived
at after much experimentation with the Bayesian lin-
ear discriminant classifier. The features have been
specially tailored to suit this particular classifier.

The SLP and cascade-correlation networks both
yielded higher test set errors than the Bayesian clas-
sifier. Unexpectedly, cascade-correlation did not al-
ways outperform SLP. This was largely due to the
mechanism used by cascade-correlation to decide
when to suspend training and add a new hidden unit.
The point at which learning slowed below the rate
determined by the ‘patience’ and ‘weight change
threshold’ parameters varied from trial to trial so
that even with careful selection of these parameters
it was unlikely that the point selected would be the
best at which to halt and add a new unit.

MLP networks were consistently more accurate
than the Bayesian classifier. The improvement in
test set performance was statistically significant
(P<0.001). The lowest test set error, obtained using

a single hidden layer of 6 units, was 6.6%. Only
MLP networks learned to classify the entire
training set correctly.

DIMENSIONALITY REDUCTION USING
NEURAL NETWORKS

Principal components analysis (5) of the feature
vectors showed there to be many small eigenvalues.
This indicated that there was a lot of redundancy in
the data suggesting that its dimensionality could be
usefully reduced. A widely used technique for
dimensionalilty reduction is to project the data onto
its principal components, and a similar result can be
achieved with neural networks.

Sanger proposed a rule to train an unsupervised sin-
gle-layer network of M units so that its weight vec-
tors converged to the first M eigenvectors of the
autocorrelation matrix of its inputs, Sanger (11).
(These are equal to the first M principal compo-
nents when zero-mean data is used). Oja proposed a
similar rule which makes the weight vectors con-
verge to span the same subspace as the first M eigen-
vectors, Hertz (12). In Oja’s rule, instead of each
unit finding a particular eigenvector, the units form
a distributed representation with equal variance at
each neuron. Other authors have suggested similar
rules and the reader is refered to Oja (13) for refer-
ences to these.

Hrycej improved the generalisation ability of a back-
propagation classifier by preprocessing its input data
with this type of network, Hrycej (14). A rule
which finds a distributed representation like that of
Oja was found to yield a better classification rate
than a rule which found particular eigenvalues.

An N-input linear self-supervised (or ‘auto-associa-
tive’) back-propagation network (SSBP) with one
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Figure 1: The effect of SSBP hidden layer size upon MLP classifier generalisation

hidden layer of M<N units forms a distributed
representation at its hidden layer which, like the
result of Qja’s rule, is a linear combination of the
first M eigenvectors, Baldi and Hornik (15).

DIMENSIONALITY REDUCTION AND
CLASSIFICATION BY BACKPROPAGATION

SSBP networks were wused to reduce the
dimensionality of the 80-clement feature vectors.
The outputs of the hidden units were used as inputs
to an MLP classifier. Although its convergence
properties are not as good as those of the previously
described single-layer networks, SSBP was chosen
to perform the dimensionality reduction in order to
maintain homogeneity. Both networks could then be
trained by the same method, namely back-
propagation.

Figure 1 shows the test set misclassification rates
obtained by reducing the data dimensionality from
80 to 10, 20, 30, 40, 50, 60, and 70. Preprocessing
the data with a 60 hidden unit SSBP resulted in a
slightly reduced test set error. An MLP with 60 in-
puts and a single hidden layer of 3 units obtained a
test set misclassification rate of 6.3%. Dimensionali-
ties 51-59 and 61-69 were not used in this study and
it is possible that they could lead to even lower er-
TOT rates.

SUMMARY

An 80-element feature set extracted from the
frequency domain was used as the basis for classifica-
tion of cervical cell images. The features were
extracted without the need for accurate segmenta-
tion of the cells. Classifiers used were SLP, MLP
and cascade-correlation networks as well as a non-
neural Bayesian classifier.

The test set misclassification rates obtained using
SLP and cascade-correlation networks were higher
than that of the Bayesian classifier. MLLPs, however,
were able to consistently outperform the Bayesian
classifier.

An SSBP network was used to form a reduced repre-
sentation of the feature data at its hidden units. This
representation was then used as input to an MLP
classifier. This scheme resulted in a slight decrease
in test set misclassifications. Further experiments
are needed to explore the full potential of this ap-
proach.

FURTHER DEVELOPMENTS

In assessing the utility of these resuits for automat-
ed prescreening it is useful to consider the errors
made by laboratories using manual screening. Ap-
proximately 60% of screening errors occur because



abnormal cells, though present in the cervix, do not
appear on the smear. A further 40% of screening er-
rors occur because abnormal cells are missed by the
cytologist. Errors due to cells being examined and
incorrectly classified are very rare, Wilkinson (16).
Therefore the accuracy of the best classifier trained
here is not good as that of human screeners.

In order to improve performance, experiments are
being carried out with images of a higher quality.
These images have increased spatial resolution
(512x512 pixels) and intensity resolution (8 bits).
In preliminary experiments using a small database
of 318 images a backpropagation network was able
to classify its test set with 100% accuracy. This
new image database is currently being expanded.
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