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Abstract

A model for tracking articulated objects is proposed us-
ing a novel 2D revolute-prismatic joint. An extension of
the RANSAC and MLESAC algorithms incorporating fea-
ture weights is used to perform robust tracking. The mod-
els are suitable for tracking certain human body structures.
Limbs are modélled as consirained planar patches. A patch

- can rotate about a joint point that is displaced relative to the
previous patch. A scenario in which the forearm is tracked
is used to illustrate the method.

1. Introduction

Two-dimensional articulated models have previously
been used to track human motion. For example, connected
planar patches were used by Ju ef af. [2] to track human
limbs based on optical flow. Here we propose articulated
models consisting of connected planar patches connected
in a quite different manner using what we refer to as 2D
revolute-prismatic joints. These allow a patch to rotate in
the image plane about a joint point which is displaced some
distance, s, in a direction orthogonal to the major axis of the
previous patch. We note in passing that, despite the similar
terminology, the models described here are quite different
. fromthe scaled prismatic models proposed by Morris and

Rehg for articulated object tracking [4]. In order to track
human motion using articulated 2D patch models, robust
fitting is required to cope with noise, clutter and tracking
ambiguities. This paper presents an extension of MLESAC,
originally proposed by Torr and Zisserman [5] as a modifi-
cation of RANSAC [1] for stereo matching. This extension
incorporates measurement likelihoods to provide a more ro-
“bust estimation. The approach is illustrated here using a sce-
-nario in which an arm is tracked through cluttered scenes.
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2. Articulated Model

An articulated model of the type illustrated in Figure 1 is
in general an acyclic graph of planar patches. In each chain
of patches, m; is connected to m;_;. Here we constrain
the motion of patches to image plane translations, rotations
and scaling. The patches are connected using 2D revolute-
prismatic joints.

Figure 1. Articulated model

A patch m; can rotate relative to m;_; about a joint
point x! which is located at the midpoint of the bottom of
the patch. A patch, my, is defined in a frame of reference,
‘R, calculated from my;_; and is parameterised as

miziwi:lirsijai] (l)

where w; and !; are the width and length of the planar patch
respectively, s; denotes the z-axis displacement of x{ in R,
and §; is the orientation of the patch about x{ with 8 = 0°
defined parallel to the y-axis of B;. R; has as its origin
the top side midpoint of m;_, and its z-axis is co-linear
with this top side. Having an x-displacement as the only
positional parameter constrains x; to lie on a line co-linear
with the top side of m,_, hence a prismatic joint. The joint
is also revolute since 8; controls the orientation of the planar
patch about x. The top, left and right sides of a patch will
be denoted T', L and R respectively. For convenience, T, L



and R will also be used to denote the sets of pixels on the
respective sides when they are rendered as line segments.

Two-dimensional revolute-prismatic joints can be used
for tracking human body structures such as the arm-torso
and leg-torso joints of an upright human. Rotation in depth
due to a person turning around is handled by the prismatic
joint parameter, s. In order to illustrate the use of this novel
kinematic model for tracking, consider a forearm-hand and
outstretched finger as in Figure 1. In this case we have two
patches: m, is used to track the forearm-hand and m; is
used to track the outstretched finger. The origin and y-axis
of Ry are defined as the image origin {0,0) and the image
y-axis respectivety. Ry is defined relative to m,;. While
1t 15 a reasonable model of an outstretched finger, a planar
patch is only a crude approximation to the combined hand
and forearm; width changes and clothing are not accurately
modelled. Nonetheless, a planar patch is a useful represen-
tation for tracking provided a robust fitting method is used.
In this scenario, each patch is fitted based on image evi-
dence for T, L and R. The bottom sides of patches do not
correspond to useful local image evidence.. L and R are
the lengest sides and evidence shouid usually be available
along their entire length. However T is relatively short and
in the case of m; only partial, noisy image evidence will
be available locally. A decision was therefore taken to de-
compose fitting for this scenario. The parallel left and right
sides were used to fit the w, s, and 6 parameters while the
top sides were used to fit the ! parameters. The next section
describes the measurement and robust fitting processes used
to fit this articulated model.

3. Robust fitting

The articulated model is fitted hierarchically to measure-
ments made on a foreground probability image, I, which
is calculated using a statistical colour modelling approach
described elsewhere [3]. Since feature point extraction and
fitting methods are the same for each patch in the model,
the patch subscript will be dropped Search is centred on a
predicted patch m* = [w*,1*, 5%, 6*].

Pairs of points are sampled at uniform intervals along the
parallel sides L* and R*. More formally, N pairs (1,,r,) €
(L*,R*) are determined, where n = 1,...,N. The points
1, and r, are positioned at a distance tN(n - 0.5) from
T~. A similar scheme is used along the top side except that
single points rather than pairs are sampled. M points are
selected on T* where the m!* point is at a distance %7 (m —
0.5) trom the end of T*.

For each pair of points, (1,,,1,). two co-linear search
line segments of length A are defined, These are centred on
1, and r, and are orthogenal to L* and R*. Let s and
s# denote the sets of all pixels on these two rendered line
segments. A match scote, g, is computed for each pair of
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pixels (x%, xf) such that x% € s¥ and xf ¢ s#. This
score is then maximised over these pairs of search points.
The score of the highest scoring pair (X n,xH) is denoted
gn. .

In the experimems described here, the likelihood of a
pair was calculated by combining steered, first-derivative
filter responses at x% and x together with the normalised
foreground probability mass between them. The normalised
response of a Scbel filter sicered to the orientation of m*
in the image, ¢, at pixel x in image [ is denoted A{p,x)
The foreground probability mass between a co-ordinate pair
(xL, %) is denoted by f(xZ, %) and is the average value
of the plxels in I on the Ime segment between x% and x2.
Therefore, the score can be written as:

o= L (o ) Sty @)

A pair (%L, %) can thus be used to define a feature vec-
tor (i, &n,Jn) where @, is the ‘width’ or Euclidean dis-
tance between the pair and €, is the -midpoint of the line
segment joining the pair.

A similar scoring process is performed for each of the
M sample points along T*. For each such point, a search
line segment of length g is centred on the point, orthogonal
to T™. The maximum scoring pixel X}, is found on each of
the M search line segments. The score again combines edge
strength with the local foreground probability mass within
the patch.

gm = h(d,x] ) f(x0,%xF) 3)

where xy is the search line endpoint inside the planar patch.
The score of X, is denoted by §,,. When the feature mea-
surement process s complete, we have two sets of features:
the set consisting of (&, €., §x) triples and the set consist-

ing of (X,,, Gm ) pairs.

3.1. RANSAC and MLESAC

Random sample consensus (RANSAC), maximum-
likelihood consensus (MLESAC) and our extension all have
at heart the idea proposed in the original RANSAC paper [1]
of fiting a model to the best points in a data set by iteratively
sampling and fitting to random subsets of the data. Subsets
are chosen of the minimum size required to instantiate the
model. The model is scored on how weil it fits the data
points. A stopping criterion is specified and once this crite-
rion has been satisfied the model which optimises the fitting
score in some respect is chosen as the new model estimate.
For our purposes, the sample set consists of indices into the
arrays of measurements. A random model, m', is instanti-
ated by generating uniform random numbers p,g € [1, N]
and r € [1, M]. The mode! parameters s" and &' are deter-
mined by two centre points, €, and €,. The width is simply



w' = 1, and ' is determined as the perpendicular distance
from the base of the patch to the top edge point, %, given
s and 8"

The proposed extensions to RANSAC have involved
changing the objective function, C, used 1o evaluate model
goodness of fit. In each scheme the underlying sampling al-
gorithm is the same. In RANSAC itself those feature points
whose distance from the model are below a threshoeld score
zero while the outliers score a constant penalty. Good mod-
els minimise this score although if the threshold is set too
high then all models will score zero. Formally, RANSAC
defines an objective function based on some error measure,

e, as
C=7 pley) (4)
i
where
_fo e < threshold 5
ple) = constant e > threshold )

MLESAC is a probabilistic version of RANSAC where
the distance of data points from the model 1s assumed dis-
tributed according to a mixture of a Gaussian and a uniform
distribution. The distribution over distance of a data point
from the model is

1 e 1
PT(E):GEGXP(—E)'F(I—Q); (6)

where the mixing parameter « is calculated using
expectation-maximisation and v is the size of the search.
This gives a more robust measure of error than least-squares
methods. The objective function that MLESAC aims to
minimise is

C=-logl ’ (N
where £ = Hj DPrie;).

3.2. Extension of MLESAC

The MLESAC scheme wefghts all measurements equally
in the fitting process. regardiess of their likelihood. The
scheme can be made more robust by incorporating these
measurement likelihoods into the fitting process. MLESAC
can also be extended into a tracking framework with the in-
clusion of a temporal prior p(m” ~!) on the model parame-
ters.

In the general case, we define some measure, e, of the
distance between measurement points and the model as be-
fore. The variances in Equation (6) are set inversely propor-
tional to the feature score. g;. This penalises models which
fit poorly to high scoring feature points. The objective func-
tion to be maximised is the posterior probability at time 7:

plm’|m” "1 1) = Lp{m™ ™) (8)
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3.3. Model-specific fitting

Now we discuss the fitting for this model in particular.
The image measurements are not made in the same pa-
rameter space as the model so fitting can not directly be
achieved in [w, !, s, 8] space. The fitting problem is subdi-
vided into fiting to «, s’ and 8" in [z, y, w| space and fit-
ting te I in ! space. w’, s’ and 8 define a line on a subspace
in [z,y, w] space since w’ is constant along the length of
the planar patch. The fitting error, e, for each data point,
(@n, €n, Gn). is calculated by measuring the 3D perpendic-
ular distance of the point from the line. The fitting error for
I' is calculated by first converting all measurements X,,, into
length values using s' and &'. Then the fitting error for each
length, ef,l, is the distance between I' and each length data
point. The objective function for this model is Equation (8)
with £ = LELT where £¢ = [], Pr(ef) with on o -
and £T =[], PrieX) with oy gi

4. Results

Two sets of results are presented here for qualitative eval-
uation. The nature of the model makes defining an objective
measure of performance problematic. The model is only
a crude approximation to the arm and as such a range of
parameters may be deemed acceptable in any given frame.
However, these results clearly show the benefits of incorpo-
rating feature weights into MLESAC for model fitting. The
first results, given in Figure 2, demonstrate the need for a
robust fitting technigue. The top row shows the model es-
timate from a least-squares (LS) fit in each frame and the
bottom row shows the ‘Extended MLESAC” estimate. The
advantages of a robust technigue are immedtiately apparent.
The LS fitting completely loses track of the arm while Ex-
tended MLESAC tracks reliably throughout the sequence.
The second result is shown in Figure 3. In order to compare
the robustness of *standard’ and ‘extended’ MLESAC a de-
liberate error was introduced by manually instantiating the
model at time 7 = 50. Standard MLESAC in the top row
fits to the measurements regarding them equally valid and
as a result fails to lock back onto the hand. Extended MLE-
SAC on the bottom row prefers a mode! which includes the
high probability measurements inside the hand and locks
back on immediately, demonstrating the advantages of in-
corporating measurement probabilities into the fitting pro-
cess over regarding each measurement equally.

5. Discussion and Future Work

This paper has described a novel articulated model us-
ing planar patches connected by what we have named a 2D
revolute-prismatic joint. The joint can handle rotation in



Figure 3. Key frames 7 = 50,51, 53,67 illustrating per‘forﬁ‘nance after tracking failure. Top row: Stan-

dard MLESAC, bottom row: Extended MLESAC

depth of certain structures with a 2D model. We have also
described the robust fitting of this model using a novel ex-
tension of MLESAC which possesses a greater degree of
robustness over MLESAC by incorporating measurement
probabilities into the fitting process. We have demonstrated
this robustness in addition to illustrating the need for a ro-
bust fitting solution through the inability of least-squares
fitting to cope with the inevitable outliets in the data.

The described methed of incorporating feature weights
info the fitling process assumes that strongly weighted fea-
ture points are more likely to be ‘inliers’. This may not
necessarily be the case. Depending on the features used,
background clutter and occlusion, for example, may result
in high probability ‘outliers’. A better assumption is that
inliers are likely to have strongly weighted features. This
has important consequences and a solution based on it is
currently under investigation.
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