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Abstract. A probabilistic method is proposed for segmentation of the knee joint. A likelihood function is formulated
that explicitly models overlapping object appearance. Priors on global appearance and geometry (including shape)
are learned from example images. Markov chain Monte Carlo methods are used to obtain samples from a posterior
distribution over model parameters from which expectations can be estimated. The result is a probabilistic segmen-
tation that quantifies uncertainty so that measurements such as joint space can be made with associated uncertainty.
Joint space area and mean point-to-contour distance are used for evaluation.

1 Introduction
The aim of this paper is to outline a probabilistic, model-based segmentation method for the knee joint from x-ray
images and to make explicit the uncertainty in the segmentation so obtained. The method explicitly handles the possible
overlapping of femur and tibia and their appearance models. Such cases are not handled in methods based on active
contours [1], active shape models or active appearance models [2], for example.

Segmentation of objects is often only an intermediate result. Consider for example medical image analysis tasks which
involve measuring the size of anatomical structures. Most standard segmentation algorithms result in a single solution
without any information as to the confidence in this solution. No information about uncertainty is propagated to the
subsequent size estimation step. Furthermore, anatomical structures almost inevitably overlap. In medical applications,
especially, it is desirable to have an indication of the certainty of a measurement and to cope with structures that overlap
or are in close proximity. The performance of the proposed method is evaluated by applying it to the segmentation of
the knee joint to enable the measurement of joint space, an important biomarker for the assessment of osteoarthritis [3].

2 Modelling Knee Radiographs
The general task of segmenting modelled objects from an image can be described in a Bayesian framework as that
of inferring the conditional distribution P (M|I, I, S) which is the probability of the model parameters, M, given a
test image I, a set of training images, I, and their annotations, S. Each object can be described by its geometry and
appearance in the image and, more specifically, in terms of shape parameters, S, geometric (non-shape) parameters,
G, global appearance parameters, Ag , and local appearance parameters, Al. Using Bayes’ rule and assuming P (I) is
fixed:

P (M|I) ∝ p(I|M)P (M) = p(I|G, S,Ag, Al)P (G)P (S)P (Ag)P (Al) (1)
Assuming pixel-wise conditional independence, the likelihood factors as

p(I|G, S,Ag, Al) =
N∏

n=1

∏
x∈Ωn

pn(I(x)|G, S,Ag, Al) (2)

where the likelihood is modelled as not depending on pixels outside a finite image support Ω =
N⋃

n=1
Ωn ⊂ R2 consisting

of N non-intersecting regions.

Point distribution models were used to model shape deformations in femoral and tibial contours [2]. Specifically, each
normalised femoral shape z was represented using shape parameters Sf by z ≈ z + Φ(Λ

1
2 • Sf ) with z being the

mean shape, Φ the eigenvectors and Λ
1
2 the square roots of the corresponding eigenvalues of the covariance matrix,

all learned from training data. (Λ
1
2 • Sf ) denotes the componentwise product. Shape parameters, St, for tibia were

defined analogously. Further geometric parameters were global parameters Gg = {tx, ty, θ, sf} where (tx, ty) is the
midpoint of the line segment connecting the centres of mass of the femur and tibia, θ is the rotation of this line segment,
and sf is scale, and local parameters Gl = {d, st, θf , θt} where d is the separation of the bones, st is the scale of the
tibia relative to the femur, and θf and θt are local rotations of the femur and tibia (see Figure 1)

X-ray images can vary a lot in terms of brightness and contrast as well as in the imaged region of anatomy and
surrounding area. Rather than an appearance model that accounts for the entire image it is sensible to consider only
a limited region around the bone contours. Specifically, appearance models were bands of width 2h centred on the
contour. These can be described by warp functions ω : x ∈ R2 7→ (α, δ) ∈ [0, 1] × [−h, h] from subsets of image
coordinates to rectangular regions, the texture patches. The value of α corresponds to the normalised arclength of the
shape and δ to the distance normal to the shape. It is important to note that ω is dependent on the shape and position
of the object. Global appearance parameters, brightness β and contrast γ, are included in the model parameters as
Ag = {β, γ} and are thus automatically inferred by the segmentation algorithm.
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Figure 1. Geometric model
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Figure 2. Local appearance. Left: masks. Right: associ-
ated texture patches (means only)

Figure 3. Definition of joint
space area.

2.1 Single Object Appearance

A warp ω maps intensity values of an image region Ω onto the rectangular texture patch T : [0, 1] × [−h, h] →
R by T (ω(Ω)) = I(Ω). Making the assumption that pixel values on a texture patch are independently Gaussian dis-
tributed, the local appearance is modelled by pixelwise means and variances, Al = {µT ,σ2

T }which are estimated from
training data using maximum likelihood1. The likelihood of the parameters is modelled using a product of Gaussians:

p(I|G, S,Ag, Al) =

(∏
x∈Ω

p

(
I(x)− β

γ

∣∣∣∣µT (ω(x)),σ2
T (ω(x))

)) W
|Ω|

(3)

where geometry and shape are accounted for by the warp ω and to avoid the need to always use the same number of
observations, the function is normalised with W chosen according to a notional mask size. This weighting enables
the importance of the prior to be varied. This was used subsequently in the MCMC algorithm to achieve sensible
acceptance rates.

2.2 Multiple Object Appearance

When segmenting multiple objects, appearance overlap should be taken into account. Each object’s appearance mask
divides the image into three image regions. The region corresponding to the mask divides into regions hypothesised
as interior and exterior to the object. The third image region is the background not corresponding to the mask. These
regions are named Ωin

f ,Ωout
f ,Ωbgd

f for the femur and Ωin
t ,Ωout

t ,Ωbgd
t for the tibia. Considering object overlaps, there

are nine possible region types: Ωin
f ∩ Ωin

t ,Ωin
f ∩ Ωout

t , . . . ,Ωbgd
f ∩ Ωbgd

t . For each of these possibilities, likelihood
functions must be chosen. Those used here are motivated by x-ray image formation.

2.2.1 X-ray image formation

Photons emitted from an x-ray source and interacting with tissue are absorbed, scattered or transmitted. Noise due to
scattering is largely filtered out in modern x-ray radioscopic equipment. The probability P that a photon is absorbed
follows Beer’s Law, so P = e−m where m =

∫
L

ξ(x)dx, with ξ being the opacity and L the path of the photon through
the object. In the simplest case m = ξ · l with l being the thickness of the object and ξ the mean opacity. The intensity
I of a point in an x-ray image created by a ray that has passed through an object is then approximated as I = I0e

−m

where I0 is the intensity of a pixel created by an undisturbed ray. (The film, equipment and digitisation process also
influence the image but are not modelled here.) Consider the case of two objects that are partially overlapping. An
x-ray passing only through the first object creates an intensity I1 = I0e

−m1 and one passing only through the second
object creates I2 = I0e

−m2 . The intensity I1,2 where the objects’ images overlap is then

I1,2 = I0e
−(m1+m2) =

I1I2

I0

Without loss of generality let the maximum intensity in an image I : R2 → [0, 1] be 1. It can be assumed that at least
one pixel in an image is created by an undisturbed ray. Therefore, I0 = 1 and intensities in regions of overlap are
approximately multiplicative.

1For N texture patches, {T1, . . . , TN}, µT is defined as the “pixelwise” mean µT (α, δ) = 1
N

NP

n=1
Tn(α, δ) and σ2

T as the “pixelwise”

variance σ2
T (α, δ) = 1

N−1

NP

n=1
(Tn(α, δ)− µT (α, δ))2.



x ∈ Likelihood factor abbr.a

Ω1 p
�

I(x)−β
γ

���µTf
(ω(x)), σ2

Tf
(ω(x))

�
pf (x)

Ω2 p
�

I(x)−β
γ

���µTt
(ω(x)), σ2

Tt
(ω(x))

�
pt(x)

Ω3
1
2
p
�

I(x)−β
γ

���µTf
(ω(x)), σ2

Tf
(ω(x))

�
+ 1

2
p
�

I(x)−β
γ

���µTt
(ω(x)), σ2

Tt
(ω(x))

�
pf+t(x)

Ω4 F(µTf
(ω(x)), σ2

Tf
(ω(x)), µTt

(ω(x)), σ2
Tt

(ω(x))) pF(x)

aAbbreviation to simplify further notation.
Table 1. Likelihood calculation with overlaps (F is the normal product distribution)

2.2.2 Likelihood functions

The mapping from an observation’s region type to its associated likelihood function is given in Table 1. Since the
opacity of soft tissue is smaller than that of bone, the likelihood for pixels lying in an overlap of soft tissue and bone
is approximated as being the same as if only bone were present. In regions of overlap of the exterior parts of two
object masks, a Gaussian mixture (abbreviated as pf+t(x)) is used since the observations are modelled by both masks.
In regions of overlap of the interior parts of two object masks, the intensities are approximately multiplicative, so the
normal product distribution F is used. Usually its density cannot be calculated analytically but can be approximated
by N(µTf

(ω(x))σ2
Tf

(ω(x)),σ2
Tf

(ω(x))σ2
Tt

(ω(x)) + µTf
(ω(x))σ2

Tt
(ω(x)) + σ2

Tf
(ω(x))σ2

Tt
(ω(x))) [4]. The final

likelihood is then

p(I|G, S,Ag, Al) =

( ∏
x∈Ω1

pf (x) ·
∏

x∈Ω2

pt(x) ·
∏

x∈Ω3

pf+t(x) ·
∏

x∈Ω4

pF(x)

)W
V

(4)

with

Ω1 = (Ωin
f ∩ (Ωout

t ∪ Ωbgd
t )) ∪ (Ωout

f ∩ Ωbgd
t ) Ω2 = (Ωin

t ∩ (Ωout
f ∪ Ωbgd

f )) ∪ (Ωout
t ∩ Ωbgd

f )

Ω3 = Ωout
f ∩ Ωout

t Ω4 = Ωin
f ∩ Ωin

t V =

∣∣∣∣∣
4⋃

i=1

Ωi

∣∣∣∣∣
Learning the likelihood model Appearance learning constructs the texture patches {T1, . . . , Tn} and calculates the
pixelwise means {µT } and variances {σ2

T }. For our application, only regions not overlapping other bones were used
to estimate them. Missing data were then estimated by interpolating from neighbouring pixels. Estimated means are
shown in Figure 2.

2.3 Prior Distributions

Priors P (G), P (S), P (Ag), P (Al) were chosen to reflect beliefs about the behaviour of the variables. Gaussian priors
were used for brightness β, contrast γ, rotations θ, θf , θt and local appearance Al with the corresponding means and
variances estimated from training data using maximum likelihood. Translation (tx, ty) had a uniform prior over a
rectangular region of the image and scale priors for sf and st were log-Gaussian. The specifying parameters of the
latter distributions were also estimated from training data.

The learning of the shape model priors was similar to the ASM shape model building step [2] and was performed
independently for femur and tibia. Femur shapes Sf = {s1

f , . . . , sN
f } were aligned and normalised using Procrustes

analysis. The mean Sf and the covariance matrix Σf were calculated. PCA was applied to Σf decomposing it into
Σf = Λf · Φf · Λ−1

f , the eigenvalue vector Λf and the eigenvectors Φf . With the standard assumption of a Gaussian
shape space it is implied that the prior of the shape parameters Sf is the multivariate standard normal distribution. Tibia
shapes St were processed analogously.

2.4 Sampling the Posterior with Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are used to generate samples from a target distribution and subsequently
to estimate expectations of functions under this distribution (see Andrieu et al. [5] for a good introduction). To sample
from the posterior, Equation (1), we used a mixture of Metropolis-Hastings random walk MCMC and a variant of hybrid
MCMC. Geometric parameters, G, were updated componentwise and shape parameters blockwise using Gaussian
random walk. Blocks were chosen such that each block accounted for approximately the same variance. Global
appearance parameters Ag = {β, γ} were updated together using the Langevin method since partial derivatives with
respect to brightness ∂P (I|M)

∂β and contrast ∂P (I|M)
∂γ are easily and efficiently calculated.
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Figure 4. (a) Example segmentation result with corresponding histograms of (b) mean
point-to-contour distances and (c) joint space areas for 40, 000 MCMC samples.

3 Experiments

Methods were evaluated on a data set of 30 standard clinical x-rays (see also [3]). Images of left knees were mirrored so
that they appeared as right knees. All images were manually annotated and leave-one-out validation was used. Shapes
were brought into correspondence using the MDL approach [6] with curvature [7]. After applying PCA, the 16 major
modes were left unchanged. Rather than discarding the minor modes, their variances were set to the mean value of the
remaining variances to enable search outside the lower-dimensional subspace.

A coarse-to-fine algorithm was used for speed since likelihood calculation based on this model was computationally
expensive. A two-step approach was used to first find the main modes of the posterior at low resolution and then
explore them at full resolution.

1st step: coarse resolution. Shape was fixed to the mean shape while the other geometric and the global appearance
parameters were updated. The Markov chain was initialised randomly as a sample from the prior distribution. The
standard deviations of the proposal functions were set equal to the standard deviations of the associated parameters
learned from the training set. The weight W was set so that likelihood and prior were of comparable magnitude so as
to encourage exploration of the posterior. (Typical performance: 20% acceptance rate, 8 minutes per 1000 samples on
Centrino 1.9 GHz, 1GB RAM, implementation in Matlab.)

2nd step: fine resolution. The chain was initialised at the MAP solution obtained from step 1. The weight W was
increased to encourage exploration of local modes. All model parameters were updated, geometric and global appear-
ance parameters with decreased variance. Shape parameters were updated in blocks with proposal standard deviations
set to half the standard deviations of the respective parameters. Further improvements in speed were achieved by sam-
pling pixels in “uninteresting” regions of the mask at a lower density. The application of measuring the joint space
demands higher accuracy along the femoral condyles and tibial plateaux than elsewhere. Therefore, the likelihood
was calculated for every pixel around the joint space and only at quarter resolution in the other areas. Step 2 resulted
in a representation of the posterior distribution (with the first 10% of samples discarded as burn-in). (Typical perfor-
mance: 8% acceptance rate, 30 minutes per 1000 samples on Centrino 1.9 GHz, 1GB RAM, implementation in Matlab.)

Figure 4(a) shows an example test image with the mean and MAP estimates overlaid along with a manual annotation.
The mean and MAP contours cannot be readily distinguished and this was also true of most other test images. Inferred
contours can be compared to a manually annotated contour based on mean point-to-contour distance defined as the
average Euclidean distance from the landmark positions to the annotated contour. Mean point-to-contour distances
along the femoral condyles (Ef ) and along the tibial plateaux (Et) of the image in Figure 4(a) are shown in Figure 4(b).
The values of Ef and Et are also indicated for the mean and MAP contours computed from the Monte Carlo samples.
Further evaluation is based on the joint space area. In the absence of a generally accepted definition of joint space area
we used the area between the tibial plateaux and femoral condyles as shown in Figure 3, normalised by the overall
scale of the bone. Figure 4(c) shows the calculated areas as well as those of the mean contour, the MAP contour and
the manual annotation for the image in Figure 4(a).



 9

 6

 3

 0

 3

 6

 9

12

15

18

 

 

5 10 15 20 25 30
 9

 6

 3

 0

 3

 6

 9

12

15

18

test images (sorted by sum of MAP errors)

m
ea

n 
po

in
t−

to
−

co
nt

ou
r 

di
st

an
ce

s
femur
tibia
MAP contour

Figure 5. Statistics summarising mean point-to-contour
distances for the test images (see text).
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Figure 6. Statistics summarising difference in joint space
area measurements (see text).

The values of Ef and Et obtained with the thirty test images are summarised in Figure 5. Results for the femur
are shown below the baseline and for the tibia above. Each histogram bar indicates the Monte Carlo estimate of
the expectation of the mean point-to-contour distance under the posterior distribution. Error bars indicate standard
deviations and MAP contour errors are also indicated. Analogously, the differences between the the joint space area
of the manual annotation and of the Monte Carlo samples and the MAP contour are summarised in Figure 6. It shows
that the automatic method tends to give larger areas than the human annotator.

4 Discussion and Conclusions

A probabilistic framework for segmentation of the knee joint was described in which appearance overlaps were explic-
itly modelled. The output was not a single contour but Monte Carlo samples from a posterior distribution over contours.
The approach is broadly applicable since overlapping objects are almost inevitable in medical applications (e.g. [8]).
Furthermore, since segmentation is often only an intermediate step it is important to quantify and propagate uncertainty
to higher level processes. An important example is the estimation of areas and volumes in medical images. The method
was applied to segmentation of femoral condyles and tibial plateaux and the joint space area was computed as a pos-
sible proxy for cartilage volume. It achieved reasonable results based on a relatively small and challenging data set.
The accuracy of the joint space area measurement has to be confirmed in further studies. The current implementation
would seem to have a tendency to overestimate joint space. However, it must be noted that, so far, neither errors in
the manual annotation nor flaws in the definition of the joint space area were considered. Future work could extend
the approach by explicitly modelling uncertainty in the manual annotations upon which learning is performed. Other
opportunities include the use of data-driven MCMC schemes to ensure full exploration of the multi-modal posterior [9]
and enhancement of the likelihood model.
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