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Abstract. Automatic segmentation of bone contours in knee x-ray images is investigated as a step towards
reliable, quantitative radiographic analysis of osteoarthritis for diagnosis and assessment of progression. A
double contour active shape model is proposed in order to simultaneously segment anterior and posterior con-
tours of the tibial plateaux. Several features are comparedfor modelling local appearance. Point-to-contour
segmentation errors are reported for both femoral and tibial contours.

1 Introduction

Osteoarthritis (OA) is the most common joint disease and themost common cause of disability of older people [1],
resulting in significant economic costs for society. It is characterised by an imbalance in the synthesis and degen-
eration of articular cartilage. In OA of the knee, cartilagecovering the tibial plateaux and femoral condyles (see
Figure 1) is typically destroyed. Two-dimensional x-ray imaging is the most widely used modality for assessing
progression of OA. Since cartilage is not apparent in x-ray images, the primary radiographic sign used is the ap-
parent space between the femoral condyles and the tibial plateaux. This space tends to shrink as the cartilage is
destroyed. Further radiographic signs are sclerotic bone,cysts and osteophytes (bone spurs due to growth of nor-
mal bone along weight-bearing regions of the tibia and femur). Although automated measurement of joint space
width parameters has been attempted [2], reliable and objective methods for quantitative analysis of OA progres-
sion based on radiographic signs are not available. This paper deals with automated segmentation of contours of
the tibia and femur as an important step towards this goal.

Figure 1. Anatomy of the knee

(a) (b)

Figure 2. A standard clinical x-ray, contrast enhanced for visuali-
sation purposes only. (a) A manual annotation of femoral andtibial
contours. (b) A segmentation result using DCASM.

Figure 2(a) shows a manual annotation of the femoral and tibial contours of interest in a clinical anteroposterior
(AP) x-ray image. In this example, concavities in the tibialplateaux result in distinct image contours corresponding
to the anterior and posterior rims of the plateaux. It is verydifficult to determine which contour is which on the
basis of the AP radiograph. The contours are therefore referred to as theinner contour and theouter contour in
a 2D sense. These double contours are not always present on both the lateral and medial plateaux. Furthermore,
the contour bifurcation points vary quite widely between example images. An extension to the active shape model
(ASM) [3, 4], referred to as the double contour active shape model (DCASM), was developed for modelling and
segmentation of such contours. The remainder of the paper describes this model and its application to a set of
standard clinical radiographs. Figure 2(b) shows an example segmentation result obtained.
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Figure 3. Dominant axis Figure 4. Modes of variation of tibia for the biggest 3 eigenvalues

2 Double Contour Active Shape Models

In common with standard ASM procedure, a set of training examples is first brought into alignment using Pro-
crustes analysis based on landmark points extracted along manually annotated contours. The landmarks and end-
points were determined using the minimum description length (MDL) approach of Davieset al. [5] with use of
curvature [6]. Contours with loops such as in Figure 2(a) aretreated as double contours. The Procrustes alignment
and MDL landmarking process is applied only to the inner contour which is treated as a reference contour. Each
(aligned) reference contour is thus described byN landmark points{(xn, yn)}N

n=1
.

Instead of treating the outer contour independently, the displacement required to move each of theN landmarks
onto the outer contour is determined. In the implementationdescribed here, these displacements are measured
along a shared dominant axis directionα which is determined so that this representation is well-defined (see
Figure 3). Thesth training shape is then represented as the3N -vectorxs = (x1, y1, s1, . . . , xN , yN , sN )>. The
sample mean and the covariance matrix are computed using Equations (1).
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(xs − x)(xs − x)> (1)

Let Φ = (φ1|φ2| · · · |φD) denote the matrix whose columns are theD eigenvectors corresponding to theD largest
eigenvaluesλ1, . . . , λD of C. The number of eigenvectors to retain is calculated as the smallestD such that95%
of the total variance is explained. Any example of the training set,xs, can be approximated by

xs ≈ x + Φbs (2)

wherebs is theD-dimensional model parameter vector, computed by

bs = Φ
>(xs − x) (3)

It is standard practice when building an ASM to model each landmark’s local appearance using a 1-D profile
centred on and orthogonal to the contour. The appearance is sampled on the contour and atK points to either side
of the contour, giving a profile of length2K + 1. This approach is used in the DCASM for modelling the local
appearance only at those landmark points with zero displacement for all training examples (i.e. whensn = 0 for all
training examples). For the remaining landmarks, profiles in the direction of the dominant axis,α, and centred on
both the inner and outer contours are used. The dominant axisdirection is used because during search the landmark
points are constrained to move in this direction. Adopting another direction would necessitate a complicated and
numerically unstable recalculation of the displacement ineach search step. The dominant axis direction is often
similar to the inner contour normal direction so the resulting appearance models are also similar.

A popular choice of appearance feature for ASM profiles is thenormalised first-order derivative (normalised gra-
dient) [4]. However, Behielset al. [7] reported significantly better segmentation of bones in x-ray images using
alternative features. Therefore, several different features were compared here, namely raw intensity, unnormalised
gradient, normalised intensity, normalised gradient, scaled intensity and scaled gradient1.

When the number of training examples is limited, appearancemodels learned separately for each landmark can
become unreliable. A windowing method is therefore adoptedin which training profiles from nearby landmarks
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Figure 5. Histograms (bin width= 2) of the segmentation errorsEs andHs when using scaled gradient and
W = 6. (a) Tibia. (b) Femur.

are pooled in order to estimate the appearance model. More specifically, for each landmark, profiles from theW
adjacent landmarks to its left and theW landmarks to its right on the contour are used in addition to profiles at the
landmark itself in order to estimate a mean profile and covariance matrix. This windowing is used for the single
contour landmarks as well as the double contour landmarks.

Standard multi-resolution ASM search [4] is used along withthe modifications needed to accomodate the double
contour model. It should be noted that a standard ASM is recovered as a special case of the DCASM when all the
displacements are set to zero.

3 Experimental Evaluation

The methods described above were evaluated on a data set of30 standard clinical x-rays of normal knees. The
image shown in Figure 2(a) is510×740 pixels which gives an idea of the resolution used. Images of left knees were
mirrored so that they appeared as right knees. All images were manually annotated and leave-one-out validation
was used for evaluation. One highly approximate, manual initialisation was provided for each image.

Segmentation accuracy is reported here in terms of the mean point-to-boundary error,Es, which is the average
distance in pixels from the obtained landmark positions to the annotated contour (taken as ground truth) for the
sth example. This error averaged over the30 test examples is denotedE. For the application of measuring the
joint space, segmentation of the tibial plateaux and the femoral condyles is of particular importance. Therefore,
the mean error along these sections of the contours is also reported and is denotedHs.

A typical overall segmentation result is shown in Figure 2(b). The first three modes of variation obtained for the
tibia are illustrated in Figure 4. Figure 5(a) plots the distribution of segmentation errors obtained for the tibia
usingW = 6 and scaled gradient profiles. Note that three examples had very poor segmentations and two of
these are shown in Figure 7. The median of the errorsEs for the tibia test examples was3.3 pixels (min = 2.1,
max = 34.0). The median of the errorHs for the tibial plateaux was3.2 pixels (min = 2.1, max = 26.4).

Figure 5(b) shows the segmentation errors obtained for the femur using scaled gradient profiles and the windowing
parameterW = 6. The median of the errorsEs was2.3 pixels (min = 1.4, max = 52.3). The median of the
errorsHs for the femoral condyles was2.0 pixels (min = 1.1, max = 18.4). The worst two results are shown in
Figure 7.

Figure 6 plots the effect on the tibia segmentation accuracyof varying the windowing parameter and the choice
of appearance feature. The windowing parameterW did not have a large impact. However, the different features
resulted in quite different segmentation accuracies. Scaled gradient was best and normalised intensity was worst
for both tibia and femur.

4 Discussion and Conclusions

This paper has shown that the proposed double contour activeshape model can be used to segment contours of
the tibia and femur in knee x-rays. This is the first publisheduse, to the authors’ knowledge, of statistical shape
models to segment femur and tibia in plane radiographs of theknee joint. The initial results are promising. In
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Figure 6. The effect of profile feature type and win-
dow size on the mean point-to-contour errors,E,
when segmenting the tibia.

Figure 7. Segmentation failures using scaled gra-
dient andW = 6. Top: tibia. Bottom: femur.

particular, the errors along the tibial plateaux and the femoral condyles are in many cases smaller than4 pixels for
the tibia (19 cases) and3 pixels for the femur(24 cases). Subsequent work is needed to determine whether thisis
sufficient for useful joint space measurement.

Tibia segmentation failures appeared to be due to structured tissue outside the bone which is clearly visible in the
upper right image of Figure 7. Since the shape converges to this false contour in low resolutions it cannot find the
true contour at higher resolutions. Therefore, it converges to a false contour. The correct segmentation might be
recovered by using a different initialisation or using longer profiles, for example.

The finding that scaled gradient was best and that normalisedintensity was worst stands in contrast to Ref. [7]
in which scaled intensity seemed to perform best for segmenting theupper end of the femur. This demonstrates
that even for similar applications, the optimal appearancemodels can be different and difficult to find. Future
work will include development of improved appearance models and search methods for this application. Since the
appearence distribution is non-Gaussian, better quality of fit measurements than the Mahalanobis distance should
be possible. Promising initial results are being obtained usingk-nearest neighbour weighted local regression.
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