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Abstract

A human appearance modelling framework where colour
distributions are associated with surface regions on an ar-
ticulated body model is presented. In general, these dis-
tributions are unknown, multi-modal and changing in time.
We therefore propose using recursively updated histograms
to represent them. For a certain pose, a set of histograms
may be collected and a likelihood constructed based on
the histograms’ similarity with the previously learned his-
tograms. To ease histogram estimation and improve compu-
tational efficiency, a merging and splitting algorithm is de-
rived which groups surface regions based upon histogram
similarity and prior knowledge of clothing layout. An in-
vestigation of the behaviour of this likelihood shows it to
be broad, smooth and peaked around the correct location,
a good candidate for coarse sampling and gradient-based
search methods. We show how conditioning the likelihood
to maximise foreground usage reduces secondary maxima.
Finally, we present results from tracking a challenging se-
quence.

1. Introduction

Tracking humans using computer vision techniques has
drawn much attention recently. Not only does it present
a challenging test-bed for evaluating tracking schemes, the
resulting applications could revolutionize human-computer
interaction. Tracking people is difficult not least because the
visual appearance is complex and varies markedly. Human
trackers often rely on a constrained appearance that restricts
application. Learned appearance models have been investi-
gated, for example by Sidenbladh et al. [4, 5]. However,
they rely on off-line learning. This work’s unique contri-
bution is the specification of a computationally feasible ap-
pearance model based upon learning the colour distribution
of points on the human body on-line.

2. Method

Using a probabilistic formulation, the tracking problem
can be stated generally as that of estimating the probabil-
ity density p({ ~φt}|{It}), where {It} denotes the image se-
quence and { ~φt} denotes the sequence of required pose
parameters for time t ∈ [0, T ]. Applying Bayes rule and
assuming a Markovian relationship between frames, yields
p(~φt|{It}) = p(It|~φt)

∫

p(~φt|~φt−1)p(~φt−1|{It−1})d~φt−1.
Each of the terms on the right-hand side has an intuitive
meaning. The first represents the pose likelihood for the
current image, the second represents the motion model and
the third represents the previous a posteriori distribution.
This manipulation effectively allows us to use a pose sam-
pling method to update the previous distribution. Neither
the likelihood nor motion terms can be specified analyti-
cally and must be modelled. Due to the high dimensionality
and limited information available from a monocular view,
a successful tracking framework will require strong likeli-
hood and motion models. A recent review by Moeslund
et al. [3] provides an introduction to human tracking. A
likelihood model is now presented based upon the tempo-
ral consistency of colour distributions on the surface of an
articulated body model.

2.1. Body Model

An object-based approach is used to model the surface
and kinematics of the human body in which a set of rigid
primitive parts are linked to form an hierarchical articulated
structure. The pose parameter, ~φ, then becomes a global
transformation and the relative orientation parameters for
each primitive. Each body part, indexed by n, has a shape
which is naturally described by some co-ordinate system,
denoted here by ~ω. A cylinder, for example, is conveniently
parameterised by a length and angle. To project points
on the surface into the image we convert to Cartesian co-
ordinates and chain homogeneous matrix transformations to
convert up the body hierarchy, into scene co-ordinates and
then into the image plane using a camera matrix.
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Figure 1. An example frame taken from a wav-
ing sequence with the model contour over-
layed.

The model presented here uses super-quadrics to repre-
sent body parts. The pose vector has twenty-two compo-
nents: six global transformation parameters and four Eu-
ler angles for each limb. The system does not model inde-
pendent head, hand or foot motion. Currently, the camera
is specified using orthographic projection since the scenes
contain little perspective effect. The extension to perspec-
tive projection in straightforward. Figure 1 provides an ex-
ample, showing the contour aligned to a frame from a se-
quence of a waving gesture. Results from processing this
sequence are used throughout the report to illustrate ideas.

2.2. Region Features

A point on the surface of the articulated body model is
specified by the body part, n, and co-ordinates, ~ω. Due to
clothing motion, an inaccurate surface model, illumination
changes and noise, the colour, ~q, at a surface point must be
represented by a distribution. For some regions, such as the
face and hands these distributions can be estimated a priori.
However, due to the varied nature of clothing and illumina-
tion this is not true in general and the distribution must be
found on-line. In addition, as Figure 2 shows, this distribu-
tion changes over time, sometimes quickly. Since clothing
is often textured the distributions can be multi-modal. Two
key problems with this approach are density estimation and
computational expense. In § 2.5 a histogram merging and
splitting algorithm is defined that makes such an approach
feasible.

We proceed by associating colour histograms with sur-
face points on the body surface and denote these by Hn,~ω .
To model the likelihood of a hypothesized pose, ~φ′, we first
project the model into the image. The set of visible pixels,
denoted by {V }, is tagged with the corresponding body part
number, n, and co-ordinate, ~ω. Using this set, hypothesized
histograms, H ′

n,~ω , are built. Each of these hypothesized his-
tograms is then compared to the corresponding learned his-

Figure 2. Probability map for a stationary
lower arm histogram for images two seconds
apart. It can be seen that the distribution
changes.

togram. Due to its theoretical properties and previous suc-
cess for tracking colour distributions [1], the Bhattacharyya
measure, Equation (1), was used to compare distributions.
The likelihood, Equation (2), is formed by averaging this
similarity measure over the set of visible pixels.

Bn,~ω =
∑

q

√

Hn,~ω(q)H ′
n,~ω(q) (1)

pR(It|~φ′) =

∑

{V } Bn,~ω

|V |
(2)

The likelihood response found from varying the lower
arm pose in Figure 1 is graphed in Figure 3. From this graph
two observations are made. First, the response is smooth
and broad. Second, that the response remains constant as
the model foreshortens in depth against the background.
Without further knowledge of the scene we are not able to
uniquely specify the pose. Furthermore, the likelihood has
multiple maxima corresponding to occluded parts. There-
fore, in this system, rather than propagating multiple solu-
tions, the likelihood is conditioned such that it maximises
foreground usage.
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Figure 3. Contour plot of the region likelihood
for the lower arm as it makes out-of-plane (ab-
scissa) and in-plane (ordinate) rotations.



2.3. Background Model

A statistical background subtraction scheme is used to
condition the likelihood to maximise foreground usage. The
background is considered to be changing slowly with re-
spect to the foreground. Background colour is assumed to
be normally distributed, with means and diagonal covari-
ance matrices specified for each pixel. To reduce the effect
of shadows, colour is specified in chromaticity space ~q =
[I = R+G+B, r = R/I, g = G/I] and the variance in the
intensity channel is scaled to reduce its effect. The system
is initially supplied with mean and covariance matrix esti-
mates and these are recursively updated using the equations
used by McKenna et al. [2]. The foreground likelihood,
Equation (3), is the fraction of foreground usage. The multi-
ple cue likelihood becomes pM (It|~φ) = pF (It|~φ)pR(It|~φ),
and is illustrated in Figure 4.

pF (I|~φ) =

∑

{V } pB(I(x,y))
∑

(x,y) pB(I(x,y))
(3)
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Figure 4. Contour plot of the multiple cue like-
lihood for the same conditions.

2.4. Histogram Re-estimation

Since the histograms are changing over time, the his-
tograms are recursively updated as in Equation (4). In the
event of a tracking error, we can increase the chance of re-
covery by only updating using pixels that are sufficiently
different from the background. In the current system the up-
date rate and update condition thresholds are constant and
chosen empirically. They are 0.2 and 0.1 respectively for
the sequences shows here.

Ht
n,~ω = (1 − k)Ht−1

n,~ω + kH ′
n,~ω (4)

2.5. Region Merging and Splitting

Assigned distinct colour distributions to each surface
point is unfeasible for two reasons: one theoretical and one

practical. Firstly, one cannot reliably estimate the histogram
from a small number of samples. Secondly, storing and
comparing such a large number of histograms is computa-
tionally infeasible.

These problems can be overcome by observing that peo-
ple dress in a similar, structured manner and that the number
of unique pieces of clothing is usually small (of the order of
10 compared to an order of 10,000 visible foreground pixels
in the images under consideration). Therefore, we propose
that points be grouped together into regions and single his-
tograms associated with them.

To justify our region splitting and merging scheme we
begin by considering the problem of estimating an unknown
probability for a colour ~q′ in a poorly represented his-
togram, using all the other surface histograms. If we assume
that each histogram’s contribution is conditionally indepen-
dent of the others this value can be expressed as a weighted
sum over all other histograms.

Hn′,~ω′(~q′) =
∑

n,~ω

Hn,~ω(~q′)B(Hn,~ω, Hn′,~ω′)p(n,~ω),(n′,~ω′)

(5)
The second term, the similarity between the distributions, is
the Bhattacharyya measure for the known data. The third
term, the prior, encodes the structure of the way people
dress and can be learnt off-line.

Direct use of this sum would however, be computa-
tionally infeasible. Region merging is an approximation
founded on the observation that large contributions to the
sum are all similar to the distribution, and hence similar
to one another. Equation (6) is a practical pairwise re-
gion merging condition based upon a fixed threshold. The
threshold, K, can be changed to suit the application and
controls how much local detail the system maintains and
thus affects its speed. For large values, the system behaves
like a template tracker and for small values more like a blob
tracker.

B(Hn,~ω, Hn′,~ω′) >
K

p(n,~ω),(n′,~ω′)
(6)

Once merged the histogram becomes the sum of its chil-
dren, either of which may have previously been merged.
The prior can either be learnt from a representative training
set or modelled. In our experiments we learned a conser-
vative prior, corresponding to the most general appearance
by using the minimum observed similarity measure. As
one would expect, this prior encodes that the limbs are usu-
ally rotationally symmetric and that opposing limbs are also
similar. Since the distributions are changing, and regions
could erroneously merge, regions can also split. Currently
this is done using a threshold on the bin lookups. When
split, the distribution is re-initialised.



3. Tracking Results

Using the multiple cue likelihood a walking sequence
containing a subject with a highly textured foreground, in
a scene with nonuniform lighting and background clutter
was tracked. A constant velocity motion model was used
to provide a starting point for a gradient search of the like-
lihood. Due to the high dimensionality the search space
was decomposed hierarchically into torso and head, and
individual limbs. The system quickly converges to repre-
senting five distinct colour distributions. It can be seen
that the tracking is successful, although the alignment is
sometimes approximate. This is due to the limited track-
ing scheme that was employed. The implementation was
coded in C++ and takes approximately 10 seconds to pro-
cess one frame. The sequence can be found on-line at
www.computing.dundee.ac.uk/staff/troberts.

4. Conclusions and Future Work

A colour-based appearance modelling framework was
presented. A likelihood model was constructed based upon
the similarity of colour distributions on the surface of an
articulated model. This likelihood response was shown to
be strong, smooth and broad. A region merging and split-
ting scheme was presented which makes such an approach
feasible. We also showed how to use foreground usage to
condition the likelihood.

Three key areas will be explored in future work. Firstly,
we plan to construct an importance sampling function us-
ing region back-projections. Secondly, after fitting regions
the edge direction field will be used to improve alignment
in a manner similar to the work of Wachter and Nagel [6].
Finally, we plan to make a quantitative comparison of dif-
ferent region features, such as edge strength.
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