
FURTHER ACCELERATION OF THE VISUALISATION
PROCESS USED IN VIRTUAL COLONOSCOPY

Mehran Sharghi and Ian W Ricketts
Department of Applied Computing

University of Dundee
Dundee, DD1 4HN, Scotland, UK.

 [msharghi/ricketts]@computing.dundee.ac.uk

ABSTRACT

We present a novel technique to accelerate the volume ray
casting process used in virtual colonoscopy. Virtual
colonoscopy is a less invasive alternative to colonoscopy
with potential for wide use in the early detection of
colorectal cancer. The idea of our method is to find the
exact distance from each image plane pixel to the closest
colon wall (boundary) voxel and use this distance
information to start ray integration directly from the colon
boundary. Our method also improves the rendering time
by exploiting the fact that only a small part of the colon is
visible from any internal viewing point. We apply a pre-
processing visibility determination algorithm to identify
the potentially visible part of the colon at each internal
view point. The algorithm only projects the potentially
visible boundary voxels on to a distance buffer. Using this
distance it is possible to skip the space and start the ray
casting integration directly from the colon wall. We have
used parallel projection and a generic projection template
to achieve more acceleration in our implementation. The
method has been implemented on an IBM compatible
personal computer and tested with a synthetic colon data
set.

KEY WORDS
Virtual colonoscopy, visualisation, volume ray casting,
acceleration, space leaping, and visibility.

1. INTRODUCTION

Colorectal cancer is reported as the second most common
cause of death, after lung cancer, in the US, Canada [1],
and the UK [2]. According to the American Cancer
Society, over 130000 new cases of colorectal cancer are
diagnosed each year in the US and over 56000 die as a
result [1]. Early detection of colorectal cancer
significantly increases the chances of survival.
Unfortunately, early-stage colorectal cancer usually
produces few if any symptoms and therefore the current
strategy for early detection relies on population screening.
It has been reported that colon cancer mortality can be
decreased to one third by regular screening [3]. Annual

testing for colorectal cancer is recommended for everyone
over the age of 50 according to the American Cancer
Society guidelines and the National Cancer Institute
recommends regular screening for all people over the age
40. Unfortunately, currently available screening methods
are either weakly specific and sensitive, or invasive and
expensive. Colonoscopy is currently the most sensitive
and specific screening method, however it is invasive and
not completely reliable [4, 5].

Virtual colonoscopy was introduced by Vining et al [6] as
a less invasive and cost effective alternative to
colonoscopy. In this method the intra-lamina view of the
colon as it is visible through a colonoscope is visualised
by reconstructing 3D images from cross-sectional images
(e.g. CT scan images) of the abdomen. There is a
possibility to virtually navigate within the colon and
search for abnormalities. This procedure usually involves
four stages: patient preparation, image acquisition,
visualisation, and interpretation of the results.

Successful use of virtual colonoscopy relies on high
quality three-dimensional visualisation. It has been
reported that virtual colonoscopy using volume rendering
is more sensitive and specific compared to the use of
surface rendering [7]. Furthermore, when a suspected
abnormality is found, volume rendering enables the
clinicians to closely examine both the tumour and its
underlying tissue. However, the significant requirement
for computational resources in volume rendering prohibits
the interactive use of it. A variety of methods have been
proposed to accelerate volume rendering including
hierarchical structures (pyramid), space leaping, image
and object space coherency, frame coherency, etc. These
are reviewed by Yagel et al [8, 9] and Danskin et al [10].

Space leaping which involves the efficient traversal or
skipping of empty space is a general technique to
accelerate volume ray casting. The advantage of this
technique is that it does not degrade the quality of the
visualisation and is well matched to applications such as
virtual colonoscopy where the image plane is within a
space surrounded by the object. Any method which
traverses the empty space in an efficient way could be
classified as a space leaping technique. There have been

reported methods to accelerate ray casting as it is used in
virtual colonoscopy by applying space leaping. Some of
these methods are reviewed below. You et al [11] applied
the polygon assisted ray casting technique (initially
introduced by Avila et al [12]) to accelerate volume
rendering in virtual colonoscopy. They used a surface
rendering algorithm to locate the inner bounding box of
the colon. Then during the ray casting the intersection
point of each ray and a polygon representing the colon
wall is calculated to start the ray integration directly from
the colon wall. Wan et al [13] applied the distance
transform to accelerate this in virtual colonoscopy. This
idea was first used by Zuiderveld et al [14] to accelerate
the ray casting process. They calculated the distance
transform for all space voxels within the colon. During
ray casting, from any starting voxel within the colon
cavity, rays can be extended in a single step by the value
of the distance transform of that starting voxel. Since the
distance transform value for any voxel is the minimum
distance to reach the colon wall it is guaranteed that the
ray will not intersect with any colon wall voxel. Once the
ray reaches the colon wall the normal ray casting process
is used. Vilanova et al [15] used cylinders to approximate
the space within tubular shaped organs (e.g. colon, blood
vessels, etc). Then in the ray casting phase the
intersection of rays and these cylinders are calculated to
traverse the space in larger steps. The cylinders are fitted
along the centre line of the organ and wholly within it.
The diameter of the cylinders is determined using the
distance transform values of the voxels along the centre
line. Sharghi et al [16] approximated the space inside the
colon by spheres and then in the ray casting process used
this approximation to traverse the space more efficiently.
Their approximation is based on the skeleton of the colon
cavity.

2. OVERVIEW OF THE METHOD

This paper reports on the use of space leaping to
accelerate visualisation via volume ray casting. It is
particularly well suited to virtual endoscopy in which the
image plane is within a hollow organ. Space leaping seeks
to rapidly traverse any space without adversely affecting
the quality of the rendering. Our method endeavours to
integrate along each ray starting at the object boundary
leaping over space voxels. The general idea of the method
is to find the exact distance from any image plane pixel to
the closest non-space voxel (i.e. boundary voxel) which
intersects with the ray cast from that image plane pixel,
then to use this distance to start ray casting from an object
boundary voxel. One approach is to find this distance by
projecting all boundary cells on to the image plane. The
actual projection is performed on to a z-buffer where only
the depth information of the projected cells is kept. In this
paper we refer to this z-buffer as the distance buffer. The
overhead of projecting all boundary cells to produce each
rendered image makes the method less attractive as an
acceleration method. Wan et al [17] used a projection

template to reduce the amount of computation involved in
projecting cells on to the distance buffer. Our method
further improves the technique by exploiting a visibility
algorithm devised for virtual colonoscopy. It relies on the
assumption that for virtual endoscopy applications in
general and virtual colonoscopy in particular, only a small
part of the organ is usually visible from any internal
viewpoint. It is therefore not necessary to project all
boundary cells. Our method uses a pre-processed
visibility determination technique and considers only a
potentially visible subset of boundary cells. Details of this
visibility determination technique are presented in the
next section.

3. VISIBILITY DETERMINATION

The visibility information required in virtual endoscopy
determines which boundary voxels are visible from the
image plane. There are two general approaches to
determining visibility. One approach is to determine
visibility interactively, i.e. calculating the visible set
before rendering each frame. The advantage of this
method is that it is possible to produce the exact visible
set for the known viewpoint. The disadvantage of the
method is the overhead of computations required to
render each frame. Another approach is to determine
visibility in a pre-processing stage. The advantage of this
latter approach is the elimination of the interactive
visibility determination computations, and the cost is
sending a more conservative (i.e. larger) potential visible
set to the next stage of the rendering pipeline.

Dealing with single voxels to determine the visibility
could be computationally inefficient. One solution is to
divide the object in to sections and determine the
visibility between sections. This is particularly relevant
when the visibility is determined in a pre-processing
stage. Consider the architecture of a house. Assume that
each section is taken to be a room in the house. This
subdivision into sections results in a conservative visible
set because a section/room may only be partially visible
(i.e. contains voxels which are not visible) but we have to
consider it as a wholly visible section/room. In the colon
there are no obvious section boundaries. The usual
approach is to divide the colon into consecutive sections.
When the image plane is inside one section, only those
sections visible from that section need to be considered. It
is also important to divide the object into an optimal
number of sections. On the one hand a large number of
shorter sections requires excessive computation to
determine visibility between sections. On the other hand a
small number of larger sections produces an overlarge
potential visible set, i.e. much larger than is strictly
required.
Our visibility determination algorithm is specifically
designed to take advantage of the colon’s anatomy. The
algorithm consists of two steps. The first step is to divide

the colon into sections and the second step is to determine
the visibility between sections.

We need to clarify the concept of a cell which we use in
this paper. When a ray intersects with the object boundary
the intersection point does not normally coincide with the
exact centre of a voxel. Consequently, at the intersection
point eight surrounding voxels must be considered. These
voxels are the vertices of a cube representing the closest
integer coordinate to the intersection point in 3D space.
We call this cube of eight voxels a cell. If all voxels of a
cell are space voxels then we refer to the cell as a space
cell and if any of these voxels is not space then we call
the cell a non-space cell.

3.1. Dividing the colon into sections

Our algorithm divides the colon into sections based on the
curvature of the colon’s centre line. The colon’s centre
line is a single voxel path in 3D space from one end to the
other of the colon. There are no branches or bifurcations
in the centre line. The algorithm starts by finding the
centre line of the colon. It then smoothes the centre line to
prevent sharp changes along it. The algorithm then starts
from one end of the centre line and accumulates the
curvature of it. When the accumulated curvature reaches a
preset threshold the algorithm searches for the best place
to end the section. The end of a section is specified by a
cut plane whose boundary is the colon wall and is
preferably perpendicular to the colon’s local direction.
We call this cut plane a portal. The algorithm performs
the search to find the end of section in a portion of centre
line where the accumulated curvature is between a lower
and an upper threshold. Portals of minimum area, i.e.
where the colon is narrowest are the best place to end a
section. However, finding these portals is not
computationally efficient. We used an approximate
method based on the distance transform value at the colon
centre line voxels. The algorithm searches in the portion
of the centre line limited by the accumulated curvature
thresholds. The voxel with the minimum distance
transform value is chosen as the end of section. The next
step is to specify a portal which passes through this voxel
and is perpendicular to the local direction of the centre
line. Voxels belonging to this portal are determined using
a 2D region growing algorithm in the portal plane. These
voxels are stored in a special data structure for later use.
Figure 1 illustrates a synthetic colon data set divided into
sections using the above algorithm.

The algorithm also identifies the voxels inside each
section including one of its ending portals by using a 3D
region growing algorithm. A section identity is stored in
each of these voxels for later use during the projection
and ray casting phases.

3.2. Determining visibility between sections

After dividing the colon into sections the next step is to
determine the visibility between sections, i.e. to determine
which sections are visible from any particular starting
section. It is not necessary to examine the visibility
between every possible pair of voxels in the two sections
in order to determine the visibility between sections. If a
voxel in one section is visible from a voxel in another
section then we consider both sections to be visible from
each other.

Our algorithm uses the following method to solve the
problem in an efficient way. Consider that we are trying
to determine those sections which are visible from section
A in figure 2. Section B, as a neighbour, is always visible
from section A. To examine the visibility between
sections A and C our algorithm examines the visibility
between the portals ending each section. In our algorithm
section C is considered visible from section A if portal P2
is visible from portal P1. If section C is not visible from
section A, the algorithm terminates. If section C is visible

A

B
C

D

P1
P2

P3

Figure 2 – Determining visibility between sections

Figure 1 – The colon divided into sections

the algorithm continues further and examines the
visibility between portal P1 and P3. In order to determine
visibility between portals the algorithm checks the
visibility between their voxels. If any of the voxels of a
portal is visible from one of the voxels of another portal
then these two portals are considered visible from each
other. The visibility between two voxels v1 and v2 is
determined by casting a ray from v1 toward v2. If the ray
intersects any non space cell before reaching v2 then the
two voxels are considered as not being visible to each
other. This is computationally efficient because the
number of voxels in a portal is much less than the number
of voxels in a section.

The visibility information is stored in an array with two
entries for each section. The corresponding entry for each
section in the array specifies how many sections are
visible before and after that section.

4. PROJECTION AND RENDERING

Remember that the image plane will be inside the volume
data set so we must identify the section(s) in which the
image plane resides. Our method first identifies the voxels
corresponding to the four corners of the image plane.
Then using the section identity stored in these voxels it
identifies the section(s) where the image plane is located.

Using the pre-processed visibility information we are able
to identify the visible section from the current position of
the image plane. The next step is to project the boundary
voxels of the visible sections and section(s) where the
image plane is located, onto the distance buffer. The
boundary cells of each section are identified and stored in
a data structure in the pre-processing step. We use a list of
sections and store the boundary cells of each section in an
array as illustrated in figure 3. This facilitates efficient
access to the boundary voxels of each section during the
projection phase.

A distance buffer (z-buffer) is used in the implementation
of our method and it contains one entry for each image
plane pixel. Values in the buffer indicate the distance
from the corresponding image plane pixels to the nearest
non-space cell along a ray in the viewing direction. The
distance buffer is initialised to a value that indicates the
distance is not yet calculated. The distance buffer is
updated by the projection of boundary cells from all
visible sections before rendering each frame. The depth
information for projected cells is stored in the distance
buffer.

The projection of a cell, which is a cube in the volume,
usually produces a hexagonal footprint. To project a cell it
is enough to project six vertices (out of eight) onto the
distance buffer plane and specify the entries in the
distance buffer covered by the projection footprint. In our
implementation we have only considered parallel

projection; however it is possible to extend the method to
perspective projection. One important property of the
parallel projection is that the projection of all cells
regardless of their position in the volume will be of the
same form and size. This property is used to increase the
performance of the method. We used the projection
template as described by Wan et al [17]. The projection
process is performed once for a cell and a template
projection footprint is constructed. This projection
template specifies the pixels which are inside the
hexagonal footprint. For each boundary cell only one
point needs to be projected onto the distance buffer and
the other points covered by the projection footprint are
determined using the projection template. The projection
template needs to be reconstructed whenever the viewing
point or direction is changed.

During the ray casting process, as the image plane is
swept pixel by pixel, the corresponding entry in the
distance buffer is examined. If the distance has already
been calculated then its value is used to skip the space and
start the ray casting from a boundary cell. If the distance
has not been previously calculated it means that the ray
does not collide with any boundary cell and therefore no
ray casting is required.

5. RESULTS

We implemented the method on an IBM compatible
personal computer. Testing used a computer generated
synthetic colon data set of 200 slices with 250x150 pixels
per slice. This data set is freely available from the authors.
Among the pre-processing operations required in our
method the most time consuming ones are the distance
transform calculations for those voxels belonging to the
colon and the space inside it, the colon centre line

 Section

 1

 2

 3

 n-

 n

 Boundary Voxels

Figure 3 – Data structure to store boundary voxels

extraction, and determination of the visibility between
sections. Using the static data set we measured 4, 8, and
25 seconds approximate computation time for each of
these operations respectively. The total pre-processing
time was approximately 40 seconds. The interactive
rendering time includes the boundary cell projection time
and ray casting. The projection time is directly related to
the number of boundary cells in the visible sections.
There were, on average, three visible sections when we
applied the method to the above data set. Furthermore, the
average number of visible voxels at each section was
29800 which is approximately 28% of the total number of
boundary voxels. We performed an animation based on
the centre line of the colon and compared the rendering
time of our accelerated method and a basic ray casting.
Our method was 5 times faster.

6. CONCLUSION

We presented a method to accelerate volume ray casting
via space leaping. The method is used in the visualisation
phase of virtual colonoscopy. The general idea of our
method is to find the exact distance from each image
plane pixel to the closest non-space voxel (i.e. a boundary
voxel) and use this distance to start integration along each
ray directly from the object boundary. This distance
information is obtained by projecting boundary voxels in
to a distance buffer. We also applied a visibility
determination method to reduce the number of projected
voxels in order to further speed up the process. This
method represents a significant improvement over that
reported by Wan et al [17] through the use of a visibility
determination algorithm. Furthermore, our visibility
determination method also represents an improvement
compared to the method used by Hong et al [18]. They
used an interactive determination of visibility to reduce
the number of triangles for the next stage in their surface
rendering pipeline. Our approach is different to their
method in that we used a pre-processing visibility
determination approach and hence suffered no interactive
overhead computation. Moreover, our method divides the
colon into sections with portals perpendicular to the
colon’s centre line instead of restricting portals to be
perpendicular to one of the principle axes.

We applied this method in a virtual colonoscopy, however
this method is not limited to virtual colonoscopy or even
virtual endoscopy. The projection of boundary cells can
be used in any volume ray casting in which space leaping
is applicable. The visibility determination technique is
specifically designed for the colon and unless the new
object has a similar form to the colon (i.e. a tubular,
hollow object) it will need some modification in order to
be applied more generally.

4. ACKNOWLEDGEMENT

The authors wish to acknowledge the financial support of
the Ministry of Science, Technology, and Higher
Education of Iran.

REFERENCES

[1] Colorectal Cancer Facts and Figures, Colon Cancer
Alliance, http://www.ccalliance.org, Last visited April.
2002.
[2] Z. Kmietowicz, NHS aims to improve care for
colorectal cancer, BMJ, 315, 1997, 1485-1486.
[3] D. Vergano, Annual Colorectal Cancer Screening Cuts
Death Risk, Medical Tribune, 40(7), 1999, 19.
[4] P. Pescatore, T. Clucker, J. Delarive, R. Meuli, D.
Pantoflickova, B. Duvoisin, P. Schnyder, A. L. Blim, and
G. Dorta, Diagnostic Accuracy and Interobserver
Agreement of CT Colonography (Virtual Colonoscopy),
Gut, 47, 2000, 126-130.
[5] D.K. Rex, C.S. Cutler, G.T. Lemmel, E.Y. Rahmani,
D.W. Clark, D. J. Helper, G.A. Lehman, and D.G. Mark,
Colonoscopic Miss Rates of Adenomas Determined by
Back-to-Back Colonoscopies, Gastroenterology, 112,
1997, 24-28.
[6] D.J. Vining, D.W. Gelfand, R. Bechold, E. Sharling,
E. Grishaw, and R. Shifrin, Technical Feasibility of Colon
Imaging with Helical CT and Virtual Reality, Proc.
Annual Meeting of the American Rontgen Ray Society,
1994, 14.
[7] K.D. Hopper, A.T. Iyriboz, S.W. Wise, J.D. Neuman,
D.T. Mauger, and C.J. Kasales, Mucosal Details at CT
Virtual Reality: Surface versus Volume Rendering,
Radiology, 214, 2000, 517-522.
[8] R. Yagel and Z. Shi, Accelerating Volume Animation
by Space-Leaping, Proc. of IEEE Viualization 93, 1993,
62-69.
[9] R. Yagel, Towards Real Time Volume Rendering,
Proc. of GRAPHICON'96, Vol. 1, July 1996, 230-241.
[10] J. Danskin. and P. Hanrahan, Fast algorithms for
volume ray tracing, 1992 Workshop on Volume
Visualization, 1992, 91-98.
[11] S. You, L. Hong, K. Junyaprasert, A. Kaufman, S.
Muraki, and Y. Zhou, Interactive Volume Rendering for
Virtual Colonoscopy, Proc. of Visualization ’97, 1997,
433-436.
[12] R. Avila, L. M. Sobierajaski, and A. Kaufman,
Towards a Comprehensive Volume Visualization System.
Proc. of Visualization ’92, 1992, 13-20.
[13] M. Wan, Q. Tang, A. Kaufman, Z. Liang, and M.
Wax, Volume Rendering Based Interactive Navigation
Within the Human Colon, Proc. of IEEE Conference
Visualization 99, 1999, 397-400.
[14] K. Zuiderveld, A. H. J. Koning, and M. A.
Viergever, Acceleration of ray Casting Using 3D Distance
Transform, Proc. of Visualization in Biomedical
Computing 92, 1992, 324-335.

[15] A. Vilanova, E. Gröller, and A. König, Cylindrical
Approximation of Tubular Organs for Virtual Endoscopy,
http://www.citeseer.nj.nec.com/320682.html, Last visited
March 2001.
[16] M. Sharghi and I.W. Ricketts, A Novel Method for
Accelerating the Visualisation Process Used in Virtual
Colonoscopy, Proc. 5th International Conference on
Information Visualisation, London, July 2001, IEEE
Computer Society, 167-172.
[17] M. Wan, S. Bryson, and A.Kaufman, Boundary Cell-
Based Acceleration for Volume Ray Casting, Computers
& Graphics, 22(6), 1998, 715-721.
[18] L. Hong, Z. Liang, A. Viswambharan, A. Kaufman,
and M. Wax, Reconstruction and Visualization of 3D
Models of Colonic Surface, IEEE Transactions on
Nuclear Science, 18(3), 1997, 1297-1302.

