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ABSTRACT 
 
We present a novel technique to accelerate the volume ray 
casting process used in virtual colonoscopy. Virtual 
colonoscopy is a less invasive alternative to colonoscopy 
with potential for wide use in the early detection of 
colorectal cancer. The idea of our method is to find the 
exact distance from each image plane pixel to the closest 
colon wall (boundary) voxel and use this distance 
information to start ray integration directly from the colon 
boundary. Our method also improves the rendering time 
by exploiting the fact that only a small part of the colon is 
visible from any internal viewing point. We apply a pre-
processing visibility determination algorithm to identify 
the potentially visible part of the colon at each internal 
view point. The algorithm only projects the potentially 
visible boundary voxels on to a distance buffer. Using this 
distance it is possible to skip the space and start the ray 
casting integration directly from the colon wall. We have 
used parallel projection and a generic projection template 
to achieve more acceleration in our implementation. The 
method has been implemented on an IBM compatible 
personal computer and tested with a synthetic colon data 
set. 
 
KEY WORDS 
Virtual colonoscopy, visualisation, volume ray casting, 
acceleration, space leaping, and visibility. 
 
 
1. INTRODUCTION 
 
Colorectal cancer is reported as the second most common 
cause of death, after lung cancer, in the US, Canada [1], 
and the UK [2]. According to the American Cancer 
Society, over 130000 new cases of colorectal cancer are 
diagnosed each year in the US and over 56000 die as a 
result [1]. Early detection of colorectal cancer 
significantly increases the chances of survival. 
Unfortunately, early-stage colorectal cancer usually 
produces few if any symptoms and therefore the current 
strategy for early detection relies on population screening. 
It has been reported that colon cancer mortality can be 
decreased to one third by regular screening [3]. Annual 

testing for colorectal cancer is recommended for everyone 
over the age of 50 according to the American Cancer 
Society guidelines and the National Cancer Institute 
recommends regular screening for all people over the age 
40. Unfortunately, currently available screening methods 
are either weakly specific and sensitive, or invasive and 
expensive. Colonoscopy is currently the most sensitive 
and specific screening method, however it is invasive and 
not completely reliable [4, 5]. 
 
Virtual colonoscopy was introduced by Vining et al [6] as 
a less invasive and cost effective alternative to 
colonoscopy. In this method the intra-lamina view of the 
colon as it is visible through a colonoscope is visualised 
by reconstructing 3D images from cross-sectional images 
(e.g. CT scan images) of the abdomen. There is a 
possibility to virtually navigate within the colon and 
search for abnormalities. This procedure usually involves 
four stages: patient preparation, image acquisition, 
visualisation, and interpretation of the results. 
 
Successful use of virtual colonoscopy relies on high 
quality three-dimensional visualisation. It has been 
reported that virtual colonoscopy using volume rendering 
is more sensitive and specific compared to the use of 
surface rendering [7]. Furthermore, when a suspected 
abnormality is found, volume rendering enables the 
clinicians to closely examine both the tumour and its 
underlying tissue. However, the significant requirement 
for computational resources in volume rendering prohibits 
the interactive use of it. A variety of methods have been 
proposed to accelerate volume rendering including 
hierarchical structures (pyramid), space leaping, image 
and object space coherency, frame coherency, etc. These 
are reviewed by Yagel et al [8, 9] and Danskin et al [10].  
 
Space leaping which involves the efficient traversal or 
skipping of empty space is a general technique to 
accelerate volume ray casting. The advantage of this 
technique is that it does not degrade the quality of the 
visualisation and is well matched to applications such as 
virtual colonoscopy where the image plane is within a 
space surrounded by the object. Any method which 
traverses the empty space in an efficient way could be 
classified as a space leaping technique. There have been 



reported methods to accelerate ray casting as it is used in 
virtual colonoscopy by applying space leaping. Some of 
these methods are reviewed below. You et al [11] applied 
the polygon assisted ray casting technique (initially 
introduced by Avila et al [12]) to accelerate volume 
rendering in virtual colonoscopy. They used a surface 
rendering algorithm to locate the inner bounding box of 
the colon. Then during the ray casting the intersection 
point of each ray and a polygon representing the colon 
wall is calculated to start the ray integration directly from 
the colon wall. Wan et al [13] applied the distance 
transform to accelerate this in virtual colonoscopy. This 
idea was first used by Zuiderveld et al [14] to accelerate 
the ray casting process. They calculated the distance 
transform for all space voxels within the colon. During 
ray casting, from any starting voxel within the colon 
cavity, rays can be extended in a single step by the value 
of the distance transform of that starting voxel. Since the 
distance transform value for any voxel is the minimum 
distance to reach the colon wall it is guaranteed that the 
ray will not intersect with any colon wall voxel. Once the 
ray reaches the colon wall the normal ray casting process 
is used. Vilanova et al [15] used cylinders to approximate 
the space within tubular shaped organs (e.g. colon, blood 
vessels, etc). Then in the ray casting phase the 
intersection of rays and these cylinders are calculated to 
traverse the space in larger steps. The cylinders are fitted 
along the centre line of the organ and wholly within it. 
The diameter of the cylinders is determined using the 
distance transform values of the voxels along the centre 
line. Sharghi et al [16] approximated the space inside the 
colon by spheres and then in the ray casting process used 
this approximation to traverse the space more efficiently. 
Their approximation is based on the skeleton of the colon 
cavity. 
 
 
2. OVERVIEW OF THE METHOD 
 
This paper reports on the use of space leaping to 
accelerate visualisation via volume ray casting. It is 
particularly well suited to virtual endoscopy in which the 
image plane is within a hollow organ. Space leaping seeks 
to rapidly traverse any space without adversely affecting 
the quality of the rendering. Our method endeavours to 
integrate along each ray starting at the object boundary 
leaping over space voxels. The general idea of the method 
is to find the exact distance from any image plane pixel to 
the closest non-space voxel (i.e. boundary voxel) which 
intersects with the ray cast from that image plane pixel, 
then to use this distance to start ray casting from an object 
boundary voxel. One approach is to find this distance by   
projecting all boundary cells on to the image plane. The 
actual projection is performed on to a z-buffer where only 
the depth information of the projected cells is kept. In this 
paper we refer to this z-buffer as the distance buffer. The 
overhead of projecting all boundary cells to produce each 
rendered image makes the method less attractive as an 
acceleration method. Wan et al [17] used a projection 

template to reduce the amount of computation involved in 
projecting cells on to the distance buffer. Our method 
further improves the technique by exploiting a visibility 
algorithm devised for virtual colonoscopy. It relies on the 
assumption that for virtual endoscopy applications in 
general and virtual colonoscopy in particular, only a small 
part of the organ is usually visible from any internal 
viewpoint. It is therefore not necessary to project all 
boundary cells. Our method uses a pre-processed 
visibility determination technique and considers only a 
potentially visible subset of boundary cells. Details of this 
visibility determination technique are presented in the 
next section. 
 
 
3. VISIBILITY DETERMINATION 
 
The visibility information required in virtual endoscopy 
determines which boundary voxels are visible from the 
image plane. There are two general approaches to 
determining visibility. One approach is to determine 
visibility interactively, i.e. calculating the visible set 
before rendering each frame. The advantage of this 
method is that it is possible to produce the exact visible 
set for the known viewpoint. The disadvantage of the 
method is the overhead of computations required to 
render each frame. Another approach is to determine 
visibility in a pre-processing stage. The advantage of this 
latter approach is the elimination of the interactive 
visibility determination computations, and the cost is 
sending a more conservative (i.e. larger) potential visible 
set to the next stage of the rendering pipeline. 
 
Dealing with single voxels to determine the visibility 
could be computationally inefficient. One solution is to 
divide the object in to sections and determine the 
visibility between sections. This is particularly relevant 
when the visibility is determined in a pre-processing 
stage. Consider the architecture of a house. Assume that 
each section is taken to be a room in the house. This 
subdivision into sections results in a conservative visible 
set because a section/room may only be partially visible 
(i.e. contains voxels which are not visible) but we have to 
consider it as a wholly visible section/room. In the colon 
there are no obvious section boundaries. The usual 
approach is to divide the colon into consecutive sections. 
When the image plane is inside one section, only those 
sections visible from that section need to be considered. It 
is also important to divide the object into an optimal 
number of sections. On the one hand a large number of 
shorter sections requires excessive computation to 
determine visibility between sections. On the other hand a 
small number of larger sections produces an overlarge 
potential visible set, i.e. much larger than is strictly 
required. 
Our visibility determination algorithm is specifically 
designed to take advantage of the colon’s anatomy. The 
algorithm consists of two steps. The first step is to divide 



the colon into sections and the second step is to determine 
the visibility between sections.  
 
We need to clarify the concept of a cell which we use in 
this paper. When a ray intersects with the object boundary 
the intersection point does not normally coincide with the 
exact centre of a voxel. Consequently, at the intersection 
point eight surrounding voxels must be considered. These 
voxels are the vertices of a cube representing the closest 
integer coordinate to the intersection point in 3D space. 
We call this cube of eight voxels a cell. If all voxels of a 
cell are space voxels then we refer to the cell as a space 
cell and if any of these voxels is not space then we call 
the cell a non-space cell. 
 
 
3.1. Dividing the colon into sections 
 
Our algorithm divides the colon into sections based on the 
curvature of the colon’s centre line. The colon’s centre 
line is a single voxel path in 3D space from one end to the 
other of the colon. There are no branches or bifurcations 
in the centre line. The algorithm starts by finding the 
centre line of the colon. It then smoothes the centre line to 
prevent sharp changes along it. The algorithm then starts 
from one end of the centre line and accumulates the 
curvature of it. When the accumulated curvature reaches a 
preset threshold the algorithm searches for the best place 
to end the section. The end of a section is specified by a 
cut plane whose boundary is the colon wall and is 
preferably perpendicular to the colon’s local direction. 
We call this cut plane a portal. The algorithm performs 
the search to find the end of section in a portion of centre 
line where the accumulated curvature is between a lower 
and an upper threshold. Portals of minimum area, i.e. 
where the colon is narrowest are the best place to end a 
section. However, finding these portals is not 
computationally efficient. We used an approximate 
method based on the distance transform value at the colon 
centre line voxels. The algorithm searches in the portion 
of the centre line limited by the accumulated curvature 
thresholds. The voxel with the minimum distance 
transform value is chosen as the end of section. The next 
step is to specify a portal which passes through this voxel 
and is perpendicular to the local direction of the centre 
line. Voxels belonging to this portal are determined using 
a 2D region growing algorithm in the portal plane. These 
voxels are stored in a special data structure for later use. 
Figure 1 illustrates a synthetic colon data set divided into 
sections using the above algorithm. 
 
The algorithm also identifies the voxels inside each 
section including one of its ending portals by using a 3D 
region growing algorithm. A section identity is stored in 
each of these voxels for later use during the projection 
and ray casting phases. 
 
 
 

3.2. Determining visibility between sections 
 
After dividing the colon into sections the next step is to 
determine the visibility between sections, i.e. to determine 
which sections are visible from any particular starting 
section. It is not necessary to examine the visibility 
between every possible pair of voxels in the two sections 
in order to determine the visibility between sections. If a 
voxel in one section is visible from a voxel in another 
section then we consider both sections to be visible from 
each other.  
 
Our algorithm uses the following method to solve the 
problem in an efficient way. Consider that we are trying 
to determine those sections which are visible from section 
A in figure 2. Section B, as a neighbour, is always visible 
from section A. To examine the visibility between 
sections A and C our algorithm examines the visibility 
between the portals ending each section. In our algorithm 
section C is considered visible from section A if portal P2 
is visible from portal P1. If section C is not visible from 
section A, the algorithm terminates. If section C is visible  
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Figure 2 – Determining visibility between sections 

Figure 1 –  The colon divided into sections 



the algorithm continues further and examines the 
visibility between portal P1 and P3. In order to determine 
visibility between portals the algorithm checks the 
visibility between their voxels. If any of the voxels of a 
portal is visible from one of the voxels of another portal 
then these two portals are considered visible from each 
other. The visibility between two voxels v1 and v2 is 
determined by casting a ray from v1 toward v2. If the ray 
intersects any non space cell before reaching v2 then the 
two voxels are considered as not being visible to each 
other. This is computationally efficient because the 
number of voxels in a portal is much less than the number 
of voxels in a section.  
 
The visibility information is stored in an array with two 
entries for each section. The corresponding entry for each 
section in the array specifies how many sections are 
visible before and after that section. 
 
 
4. PROJECTION AND RENDERING 
 
Remember that the image plane will be inside the volume 
data set so we must identify the section(s) in which the 
image plane resides. Our method first identifies the voxels 
corresponding to the four corners of the image plane. 
Then using the section identity stored in these voxels it 
identifies the section(s) where the image plane is located. 
  
Using the pre-processed visibility information we are able 
to identify the visible section from the current position of 
the image plane. The next step is to project the boundary 
voxels of the visible sections and section(s) where the 
image plane is located, onto the distance buffer. The 
boundary cells of each section are identified and stored in 
a data structure in the pre-processing step. We use a list of 
sections and store the boundary cells of each section in an 
array as illustrated in figure 3. This facilitates efficient 
access to the boundary voxels of each section during the 
projection phase.  
 
A distance buffer (z-buffer) is used in the implementation 
of our method and it contains one entry for each image 
plane pixel. Values in the buffer indicate the distance 
from the corresponding image plane pixels to the nearest 
non-space cell along a ray in the viewing direction. The 
distance buffer is initialised to a value that indicates the 
distance is not yet calculated. The distance buffer is 
updated by the projection of boundary cells from all 
visible sections before rendering each frame. The depth 
information for projected cells is stored in the distance 
buffer. 
 
The projection of a cell, which is a cube in the volume, 
usually produces a hexagonal footprint. To project a cell it 
is enough to project six vertices (out of eight) onto the 
distance buffer plane and specify the entries in the 
distance buffer covered by the projection footprint. In our 
implementation we have only considered parallel 

projection; however it is possible to extend the method to 
perspective projection. One important property of the 
parallel projection is that the projection of all cells 
regardless of their position in the volume will be of the 
same form and size. This property is used to increase the 
performance of the method. We used the projection 
template as described by Wan et al [17]. The projection 
process is performed once for a cell and a template 
projection footprint is constructed. This projection 
template specifies the pixels which are inside the 
hexagonal footprint. For each boundary cell only one 
point needs to be projected onto the distance buffer and 
the other points covered by the projection footprint are 
determined using the projection template. The projection 
template needs to be reconstructed whenever the viewing 
point or direction is changed. 
 

During the ray casting process, as the image plane is 
swept pixel by pixel, the corresponding entry in the 
distance buffer is examined. If the distance has already 
been calculated then its value is used to skip the space and 
start the ray casting from a boundary cell. If the distance 
has not been previously calculated it means that the ray 
does not collide with any boundary cell and therefore no 
ray casting is required. 
 
 
5. RESULTS 
 
We implemented the method on an IBM compatible 
personal computer. Testing used a computer generated 
synthetic colon data set of 200 slices with 250x150 pixels 
per slice. This data set is freely available from the authors. 
Among the pre-processing operations required in our 
method the most time consuming ones are the distance 
transform calculations for those voxels belonging to the 
colon and the space inside it, the colon centre line 
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Figure 3 – Data structure to store boundary voxels  



extraction, and determination of the visibility between 
sections. Using the static data set we measured 4, 8, and 
25 seconds approximate computation time for each of 
these operations respectively. The total pre-processing 
time was approximately 40 seconds. The interactive 
rendering time includes the boundary cell projection time 
and ray casting. The projection time is directly related to 
the number of boundary cells in the visible sections. 
There were, on average, three visible sections when we 
applied the method to the above data set. Furthermore, the 
average number of visible voxels at each section was 
29800 which is approximately 28% of the total number of 
boundary voxels. We performed an animation based on 
the centre line of the colon and compared the rendering 
time of our accelerated method and a basic ray casting. 
Our method was 5 times faster.  
 
 
6. CONCLUSION 
 
We presented a method to accelerate volume ray casting 
via space leaping. The method is used in the visualisation 
phase of virtual colonoscopy. The general idea of our 
method is to find the exact distance from each image 
plane pixel to the closest non-space voxel (i.e. a boundary 
voxel) and use this distance to start integration along each 
ray directly from the object boundary. This distance 
information is obtained by projecting boundary voxels in 
to a distance buffer. We also applied a visibility 
determination method to reduce the number of projected 
voxels in order to further speed up the process. This 
method represents a significant improvement over that 
reported by Wan et al [17] through the use of a visibility 
determination algorithm. Furthermore, our visibility 
determination method also represents an improvement 
compared to the method used by Hong et al [18]. They 
used an interactive determination of visibility to reduce 
the number of triangles for the next stage in their surface 
rendering pipeline. Our approach is different to their 
method in that we used a pre-processing visibility 
determination approach and hence suffered no interactive 
overhead computation. Moreover, our method divides the 
colon into sections with portals perpendicular to the 
colon’s centre line instead of restricting portals to be 
perpendicular to one of the principle axes. 
 
We applied this method in a virtual colonoscopy, however 
this method is not limited to virtual colonoscopy or even 
virtual endoscopy. The projection of boundary cells can 
be used in any volume ray casting in which space leaping 
is applicable. The visibility determination technique is 
specifically designed for the colon and unless the new 
object has a similar form to the colon (i.e. a tubular, 
hollow object) it will need some modification in order to 
be applied more generally. 
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