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Abstract. A model of human appearance is presented for efficient pose estima-
tion from real-world images. In common with related approaches, a high-level
model defines a space of configurations which can be associated with image
measurements and thus scored. A search is performed to identify good config-
uration(s). Such an approach is challenging because the configuration space is
high dimensional, the search is global, and the appearance of humans in images
is complex due to background clutter, shape uncertainty and texture.

The system presented here is novel in several respects. The formulation allows
differing numbers of parts to be parameterised and allows poses of differing di-
mensionality to be compared in a principled manner based upon learnt likelihood
ratios. In contrast with current approaches, this allows a part based search in the
presence of self occlusion. Furthermore, it provides a principled automatic ap-
proach to other object occlusion. View based probabilistic models of body part
shapes are learnt that represent intra and inter person variability (in contrast to
rigid geometric primitives). The probabilistic region for each part is transformed
into the image using the configuration hypothesis and used to collect two appear-
ance distributions for the part’s foreground and adjacent background. Likelihood
ratios for single parts are learnt from the dissimilarity of the foreground and ad-
jacent background appearance distributions. It isimportant to note the distinction
between thistechnique and restrictive foreground/background specific modelling.
It is demonstrated that this likelihood allows better discrimination of body parts
in real world images than contour to edge matching techniques. Furthermore,
the likelihood is less sparse and noisy, making coarse sampling and local search
more effective. A likelihood ratio for body part pairs with similar appearances
is also learnt. Together with a model of inter-part distances this better describes
correct higher dimensional configurations. Results from applying an optimization
scheme to the likelihood model for challenging real world images are presented.
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1 Introduction

It is popular in the literature to match a high-level shape model to an image in order to
recover human pose (see the review papers [1, 2]). Samples are drawn from the shape
configuration space to search for a good match. The success of this approach, in terms
of its accuracy and efficiency, depends critically on the choice of likelihood formula
tion and its implicit assumptions. This paper presents a strong likelihood model and
a flexible, effectively low dimensional formulation that allows efficient inference of
detailed pose from real-world images. Pose estimation is performed here from single
colour images so no motion information is available. This method could however form
an important component in an automatically (re)initialising human tracker.

1.1 Assumptions

Estimation of human body pose from poorly constrained scenes is made difficult by
the large variation in human appearance. The system presented here aims to recover
the variation due to body pose automatically and efficiently in the presence of other
variations due to:

unknown subject identity, clothing colour and texture
unknown, significantly cluttered, indoor or outdoor scenes
uncontrolled illumination

general, other object occlusion

It is assumed that perspective effects are weak and that the scale is such that distri-
butions of pixel values or local features can be estimated and used to characterise body
parts. It is further assumed that the class of view point is known, in this case a side
on view. These assumptions apply to a large proportion of real world photographs of
people.

1.2 Formulation

There are two main approaches to human pose estimation. The ‘top-down’ approach
makes samples in a high dimensional space and fully models self-occlusion (e.g. [3—
6]). It does not incorporate bottom-up part identification and is inappropriate without a
strong pose prior (and is therefore mostly used in trackers). The ‘ bottom-up’ approach
identifies the body parts and then assembles them into the best configuration. Whilst it
does sample globally it does not model self-occlusion. Both approachestend to rely on
afixed number of parts being parameterised (a notabl e exception being the recent work
of Ramanan and Forsyth [7]). However, occlusion by other objects or weak evidence
may make some parts unidentifiable. The approach of partial configurations presented
here bridges these two approaches by allowing configurations of different dimensional-
ities to be compared. Thisis done by combining learnt likelihood ratios computed only
from the parameterised, visible parts. The method has several advantages. Firstly, it al-
lows general occlusion conditionsto be handled. Secondly, it makes use of the fact that
some parts might be found more easily than others. For example, it is often easier to
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locate partsthat do not overlap. Thirdly, it makes use of the fact that configurationswith
small numbers of parts contain much of the overall pose information because of inter-
part linking. For example, knowing the position of just the head and outer limbs greatly
constrains the overall pose. The approach of partial configurations, along with a global
stochastic optimization scheme, is more flexible than pictoria structures [8] since it
alows alargerange of occlusion conditions. When employed in atime-constrained op-
timization scheme, it allows the system to report lower dimensional solution(s) should
a higher dimensional one not be found in time. A consequence of the formulation is
that parts must be parameterised in their own co-ordinate system rather than hierar-
chicaly as is often the case in tracking systems, e.g. [3]. Whilst this might appear to
increase the dimensionality of the pose parameter space, in practice an offset term is
often required to model complex joints like the shoulder [6] making the difference one
of mathematical convenience.

1.3 Ouitline

The remainder of the paper details the three components that make up the likelihood
ratio used to find humans in real images. For ease of exposition, Section 2 begins by
describing the likelihood ratio used to find single body parts. A probabilistic region
template is transformed into image space and used to estimate foreground and adja-
cent background appearances. The hypothesised foreground and background appear-
ances are compared and a likelihood ratio is computed, based upon learnt PDFs of the
similarity for on-part responses and off-part responses. The performance of this tech-
nigque is then demonstrated and compared to a competing method. Section 3.2 presents
amethod for comparing hypothesi sed pose configurationsincorporating inter-part joint
constraints in which subsets of the body parts are instantiated. Section 3.3 then intro-
duces a constraint based on the a priori expectation that pairs of parts will have similar
appearance. Finally, pose estimation results are presented and conclusions drawn.

2 Finding Single Partsusing Probabilistic Regions

The model of body parts proposed here provides an efficient mechanism for the eval-
uation of hypothesised body parts in everyday scenes due to a highly discriminatory
response and characteristics that support efficient sampling and search. This Section
describes the method used for modelling body part shape and the use of image mea-
surements to score part hypotheses. It concludes with an investigation of the resulting
response.

2.1 Modelling Shape

Current systems often use 2D or 3D geometric primitives such as ellipses, rectangles,
cylinders and tapered superquadricsto represent body parts (e.g. [3-5]). These are con-
venient but rather ad hoc approximations. Instead, probabilistic region templates are
used here as body part primitives. Due to the limited presence of perspective effects
and 3D shape variation, a 2D model with depth ordering is used to represent the body.
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A variation of the scaled prismatic model [9] is used to parameterise the transformed
appearance. This reduces the dimensionality compared to a 3D model and removes
kinematic singularities[10].

A body part, labelled here by i(: € 1...N), isrepresented using a single probabilis-
tic region template, M;, which represents the uncertainty in the part’'s shape without
attempting to enable shape instances to be accurately reconstructed *. This is particu-
lary important for efficient sampling when the subject wears lose fitting clothing. The
probability that an image pixel at position (x,y) belongs to a hypothesised part i is
then given by M, (T;(x,y)) where T; isalinear transformation from image coordinates
to template coordinates determined by the part’s centre, (z ., y.), image plane rotation,
0, elongation, e, and scale, s. The elongation parameter alters the aspect ratio of the
template and is used to approximate rotation in depth about one of the part’s axes. The
probabilities in the template are estimated from example shapes in the form of binary
masks obtained by manual segmentation of training images in which the elongation is
maximal (i.e. in which the mgjor axis of the part is parallel to the image plane). These
training examples are aligned by specifying their centres, orientations and scales. Un-
parameterised pose variations are marginalised over, allowing a reduction in the size of
the state space. Specifically, rotation about each limb’s major axisis marginalised since
these rotations are difficult to observe. The templates are also constrained to be sym-
metric about this axis. It has been found, dueto the insensitivity of the likelihood model
described below to precise contour location, that upper and lower arm and leg parts can
reasonably be represented using a single template. This greatly improves the sampling
efficiency. Some learnt probabilistic region templates are shown in Fig. 1. The uncer-
tain regions in these templates arise because of (i) 3D shape variation due to change of
clothing and identity, (ii) rotation in depth about the major axis, and (iii) inaccuracies
in the alignment and manual segmentation of the training images.

Fig. 1. Head, torso and limb probabilistic region templates. The upper and lower arm and legs are
represented using a single mask (increasing sampling efficiency). Notice the masks' symmetries.

! Note that while it would be possible to represent the body parts using a set of basis regions,
the mean was found to be sufficient here.
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2.2 SinglePart Likelihood

Several methods for body part detection have been proposed although in the opinion
of the authors much work remains to be done. Matching geometric primitives to an
edge field is popular, e.g. [11]. Wachter and Nagel [3] used only the edges that did not
overlap with other parts. Sidenbladh et al. [12] emphasised learning the distribution of
foreground and background filter responses (edge, ridge and motion) rather than form-
ing ad hoc models. Ronfard et al. [8] learned part detectors from Gaussian derivative
filters. Another popular method is modelling the background, but this has the obvious
limitation of requiring knowledge of the empty scene. Matching model boundaries to
local image gradients often resultsin poor discrimination. Furthermore, edge responses
provide a relatively sparse cue which necessitates dense sampling. In order to achieve
accurate resultsin real world scenes the authors believe that a description that takes ac-
count of colour or texture is necessary. To accomplish this the high-level shape model
can be used earlier in the inference process. One might envisage learning a model that
described the wide variation in the foreground appearance of body parts present in a
population of differently clothed people. Such a model would seek to capture regular-
ities due to the patterns typically used in clothing. However, such an approach would
require a high dimensional model and prohibitively large amounts of training data. Fur-
thermore, it would not be strongly discriminatory because most clothing and image
regions are uniformly textured.

/ \

Divergence

/

B

Fig. 2. The flow of data: A lower leg body part probabilistic region template is transformed into
the image. The spatial extent of the template is such that the areas (in the probabilistic sense)
of the foreground and background regions are approximately equal. The probabilistic region is
used to estimate the foreground appearance and adjacent background appearance histograms. A
likelihood is learnt based upon the divergence of the two histograms.

The approach taken here is to use the dissimilarity between the appearance of the
foreground and background of atransformed probabilistic region asillustrated in Fig. 2.
These appearances will be dissimilar as long as a part is not completely camouflaged.
The appearances are represented here as PDFs of intensity and chromaticity image fea-
tures, resulting in 3D distributions. In general, local filter responses could also be used
to represent the appearance (c.f. [13]). Since texture can often result in multi-modal
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distributions, each PDF is encoded as a histogram (marginalised over position). For
scenes in which the body parts appear small, semi-parametric density estimation meth-
ods such as Gaussian mixture models would be more appropriate. The foreground ap-
pearance histogram for part ¢, denoted here by F';, is formed by adding image features
from the part’s supporting region proportiond to M ,;(T;(z,y)). Similarly, the adjacent
background appearance distribution, B ;, is estimated by adding features proportional to
1— My(Ti(z,y)).

It is expected that the foreground appearance will be less similar to the background
appearance for configurations that are correct (denoted by on) than incorrect (denoted
by om). Therefore, a PDF of the Bhattacharya measure given by Equation (1) is learnt
for on and om configurations[14]. The on distribution was estimated from data obtained
by manually specifying the transformation parameters to align the probabilistic region
template to be on parts that are neither occluded nor overlapping. The on distribution
was estimated by generating random alignments elsewhere in 100 images of outdoor
and indoor scenes. The on PDF can be adequately represented by a Gaussian (although
in fact the distribution is skewed). Equation (2) defines SINGLE; astheratio of these
two distributions. This is the response used to score a single body part configuration
andis plottedin Fig. 3.

I(F;,B;) = > /F(f) x Bi(f) 1)
f

p(I(F;, B;)|on
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= =z 5
£ o2 o
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-14
Similarity of Foreground Appearance to Adjacent Similarity of Foreground Appearance to Adjacent
Background Appearance Background Appearance

Fig. 3. Left: A plot of the learnt PDFs of foreground to background appearance similarity for the
on and on part configurations of ahead template. Right: The log of the resulting likelihood ratio.
It can be seen that the distributions are well separated.

2.3 Enhancing Discrimination using Adjoining Regions

When detecting single body parts, the performance can be improved by distinguish-
ing positions where the background appearance is most likely to differ from the fore-
ground appearance. For example, due to the structure of clothing, when detecting an
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upper arm, adjoining background areas around the shoulder joint are often similar to
the foreground appearance (as determined by the structural model used here to gather
appearance data). The histogram model proposed thus far, which marginalises appear-
ance over position, does not use this information optimally. To enhance discrimination,
two separate adjacent background histograms are constructed, one for adjoining regions
and another for non-adjoining regions. It is expected that the non-adjoining region ap-
pearance will be less similar to the foreground appearance than the adjoining region
appearance. Currently, the adjoining and non-adjoining regions are specified manually
during training by a hard threshold. A probabilistic approach, where the regions are
estimated by marginalising over the relative pose between adjoining parts (to get alow
dimensional model), would be better, but requires large amounts of training data. It
is important to note that this is only important, and thus used for, better bottom-up
identification of body parts. When the adjoining part is specified using a multiple part
configuration, the formulation presented later in Section 3.1 is used.

2.4 Single Part Response I nvestigation

Themiddle column of Fig. 4 showsthe projection of thelikelihood ratio computed using
Equation (2) onto typical images containing significant clutter. The top image shows
the response for a head while the other two images show the response of a vertically-
oriented limb filter. It can be seen that the techniqueis highly discriminatory, producing
relatively few false maxima. Note the false response in between the legs in the second
image: the space between the legs is itself shaped like a leg. Although images were
acquired using various cameras, some with noisy colour signals, system parameters
were fixed for all test images.

In order to provide acomparison with an aternative method, the responses obtained
by comparing the hypothesi sed part boundarieswith edge responseswere computedin a
similar manner to Sidenbladh and Black [12]. These are shown in the rightmost column
of Fig. 4. Orientations of significant edge responsesfor foreground and background con-
figurations were learned (using derivatives of the probabilistic region template), treated
as independent and normalised for scale. Contrast normalisation was not used. Other
formulations (e.g. averaging) proved to be weaker on the scenes under consideration.
The responses using this method are clearly less discriminatory.

Fig. 5 illustrates the typical spatia variations of both the body part likelihood re-
sponse proposed here and the edge-based likelihood. The edge response, whilst indica-
tive of the correct position, has significant fal se positive likelihood ratios. The proposed
part likelihood is more expensive to compute than the edge-based filter (approximately
an order of magnitude slower in our implementation). However, it is far more discrimi-
natory and as a result, fewer samples are needed when performing pose search, leading
to an overall performancebenefit. Furthermore, the collected foreground histogramsare
useful for other likelihood measurements as discussed bel ow.

3 Body Pose Estimation with Partial Configurations

Since any single body part likelihood will result in false positives it is important to
encode higher order relationships between body partsto improve discrimination. In this
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Fig. 4. First column: Typical input images from both outdoor and indoor environments. Second
column: projection of the log likelihood (positive only, re-scaled) from the part filters. Third
column: projection of the log likelihood ratio (positive only, re-scaled) for an edge-based model.
First row: head model. Second and third rows: limb model (vertical orientation).

system this is accomplished by encoding an expectation of structure in the foreground
appearance and the spatial relationship of body parts.

3.1 Extending Probabilistic Regionsto Multi-Part Configurations

Configurations containing more than one body part can be represented using a straight-
forward extension of the probabilistic region approach described above. In order to
account for self-occlusion, the pose space is represented by a depth ordered set, V,
of probabilistic regions with parts sharing a common scale parameter, s. When taken
together, the templates determine the probability that a particular image feature be-
longsto a particular parts foreground or background. More specifically, the probability
that an image feature at position (x, y) belongs to the foreground appearance of part
i is given by M;(Ti(z,y)) x [[; (1 — M;(T;(z,y)) where j |abels closer, instanti-
ated parts. Forming the background appearance is more subtle since some parts often
have a similar appearance. Therefore, a list of paired body parts is specified manu-
ally and the background appearance histogram is constructed from features weighted
by [T, (1 — My (Tk(x,y)) where k labels dl instantiated parts other than i and those
paired with 7. Thus, asingleimage feature can contribute to the foreground and adjacent
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Fig. 5. Comparison of the spatial variation (plotted for a horizontal change of 200 pixels) of the
learnt log likelihood ratios for the model presented here (l€ft) and the edge-based model (right) of
the head in the first image in Fig. 4. The correct position is centered and indicated by the vertical
bar. Anything above the horizontal bar, corresponding to alikelihood ratio of 1, ismore likely to
be a head than not.

background appearance of severa parts. When insufficient data is available to estimate
either the foreground or the adjacent background histogram (as determined using an
areathreshold) the corresponding likelihood ratio is set to one.

3.2 Inter-Part Joint Constraints

A link is introduced between parts ¢ and j if and only if they are physically connected
neighbours. Each part has a set of control pointsthat link it to its neighbours. A link has
an associated value LIN K;; ; given by:

1 if (52"]‘/8 < Ai,j
eldii/s=4Aii)/7 otherwise

LINK,; = { €)
where ¢; ; is the image distance between the control points of the pair, A; ; is the max-
imum un-penalised distance and o relates to the strength of penalisation. If the neigh-
bouring parts do not link directly, because intervening parts are not instantiated, the
un-penalised distance is found by summing the un-penalised distances over the com-
plete chain. This can be interpreted as a force between parts equivalent to a telescopic
rod with a spring on each end.

3.3 Learnt Paired Part Similarity

Certain pairs of body parts can be expected to have a similar foreground appearance to
one another. For example, a person’s upper left arm will nearly always have a similar
colour and texture to the upper right arm. In the current system, the limbs are paired
with their opposing parts. To encode this knowledge, a PDF of the divergence measure
(computed using Equation (1)) between the foreground appearance histograms of paired
parts and non-paired partsislearnt. Equation (4) showstheresulting likelihood ratio and
Fig. 6 graphsthis ratio. Fig. 7 shows a typical image projection of this ratio and shows
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Fig. 6. Left: A plot of the learnt PDFs of foreground appearance similarity for paired and non-
paired configurations. Right: The log of the resulting likelihood ratio. It can be seen, aswould be
expected, that more similar regions are more likely to be a pair.

the technique to be highly discriminatory. It limits possible configurations if one limb
can be found reliably and helps reduce the likelihood of incorrect large assemblies.
p(I(E, Fj)|0ni’ Onj)
pI(F3, Fy)loni;onj)

4)

PAIR, ; =

Fig. 7. Investigation of a paired part response. Left: an image for which significant limb candi-
dates are found in the background. Right: the projection of the likelihood ratio for the paired
response to the person’s lower right leg in the image.

3.4 Combiningthelikelihoods

Learning the likelihood ratios allows a principled comparison of the various cues. The
individual likelihood ratios are combined by assuming independence and the overall
likelihood ratio is given by Equation(5). This rewards correct higher dimensional con-
figurations over correct lower dimensional ones.

R= ][] SINGLE: x || PAIR;; x [ LINK,, (5
% i,jEV i,jeEV



Human Pose Estimation 11

3.5 Pose Estimation Results

The sampling scheme is described only briefly here as the emphasis of this paper is
on a new formulation and likelihood. The search techniques will be more fully devel-
oped in future work. It is emphasised that the aim of the sampler is treated as one of
maximisation rather than density estimation. The system begins by making a coarse
regular scan of the image for the head and limbs. These results are then locally opti-
mised. Part configurations are sampled from the resulting distribution and combined
to form larger configurations and then optimised (in the full dimensiona pose space,
including the body part label) for afixed period of time. It is envisaged that, due to the
flexibility of the parametrisation, a set of optimization methods such as genetic style
combination, prediction, local search, re-ordering and re-labelling can be combined us-
ing a scheduling algorithm and a shared sample population to achieve rapid, robust,
global, high dimensional pose estimation. The system was implemented using an effi-
cient, in-house C++ framework. Histogramswith 8 x 8 x 8 hinswere used to represent a
part’s foreground and adjacent background appearance. The system samples single part
configurations at the scale shown in Fig. 2 at approximately 3 K H z from an image with
resolution 640 x 480 on a2GHz PC. Fig. 8 shows results of searching for partial pose
configurations. It should be emphasised that although inter-part links are not visualised
here, these results represent estimates of pose configurationswith inter-part connectiv-
ity as opposed to independently detected parts. The scale of the model was fixed and
the elongation parameter was constrained to be above 0.7.

4 Summary

A system was presented that allows detailed, efficient estimation of human pose from
real-world images. The focus of the paper was the investigation of a novel likelihood
model. The two key contributions were (i) a formulation that allowed the representa-
tion and comparison of partia (Ilower dimensional) solutions and modelled other object
occlusion and (ii) ahighly discriminatory learnt likelihood based upon probabilistic re-
gionsthat allowed efficient body part detection. It should be stressed that thislikelihood
depends only on there being differences between a hypothesised part’s foreground ap-
pearance and adjacent background appearance. It does not make use of scene-specific
background modelsand s, as such, general and applicable to unconstrained scenes. The
results presented confirm that it is possible to use partial configurations and a strong
likelihood model to localise the body in real-world images. To improve the results, fu-
ture work will need to address the following issues. A limited model of appearance was
employed based on colour values. Texture orientation features should be employed to
disambiguate overlapping parts (e.g. the arm lying over the torso). The model should be
extended through closer consideration of the distinction between structural (kinematic)
and visual segmentation of the body. The assumptions of independence between thein-
dividual likelihoods, particularly for the link and paired appearance likelihoods, needs
investigation. Lastly, and perhaps most importantly, future work needs to improve the
sampler to alow high dimensional configurations that contain self occlusion and visu-
aly similar neighbouring parts to be localised.
Acknowledgments: Thiswork was funded by the UK EPSRC.
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Fig. 8. Results from a search for partial pose configurations. The images are of both indoor and
outdoor scenes and contain a significant amount of background clutter and in one case a door
which partially occludes the subject. The samples with maximum score after searching for 2
minutes are shown.
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