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Abstract

A likelihood formulation for human tracking is presented based upon
matching feature statistics on the surface of an articulated 3D body model.
A benefit of such a formulation over current techniques is that it provides
a dense, object-based cue. Multi-dimensional histograms are used to rep-
resent feature distributions and different histogram similarity measures are
evaluated. An on-line region grouping algorithm, driven by prior knowl-
edge of clothing structure, is derived that enables better histogram estimation
and greatly increases computational efficiency. Finally, we demonstrate that
the smooth, broad likelihood response allows efficient inference using coarse
sampling and local optimisation. Results from tracking real world sequences
are presented.

1 Introduction
Human tracking is a difficult and interesting problem and the recent surge in research
interest is due to both the solutions’ possible applications and the problems’ challenging
nature. Tracking people is difficult not least because of their complex appearance. This
paper presents an appearance model that brings tracking in poorly constrained, real world
scenes a step closer.

Much human tracking research adopts a state-based, probabilistic, Bayesian, analysis-
by-synthesis framework. Furthermore, much of the research progress can be broadly
categorised into either modelling advancements or inference advancements. We briefly
discuss this framework and the state of the art in each area to provide a background to
illustrate where our method contributes.

The aim of the tracking system is to find the state of the target Xt = {x0, ..., xt}, given
the observations Yt = {y0, ..., yt} and a body of prior knowledge p(Xt) (where x ∈ <n

and t ∈ [0, T ]). However, due to noise, model inaccuracies and loss of information
there are usually genuine ambiguities and we must represent our knowledge using a belief
distribution p(Xt|Yt) instead. In general, distributions at particular times can be found
using Bayesian filtering:



p(xt|Yt) =

∫
...

∫
p(Xt|Yt)dx0...dxt−1 (1)

∝

∫
...

∫
p(Yt|Xt)p(Xt)dx0...dxt−1 (2)

The first term on the right hand side of Equation (2) represents the likelihood model and
the second represents a prior over paths through state space. It is important to realise
that the posterior probability distribution is induced by the chosen likelihood and prior.
Accurate modelling of these terms allows for easier and more accurate estimation. For
the case of modelling for human tracking there are many difficulties: the clothing can be
loose, textured, changing over time and not known a priori and the inter-frame motion
can be large and varied. The topic of this paper, which builds upon our previous work [9],
is the derivation and evaluation of a computationally feasible likelihood model that allows
tracking in real world environments. Many state-of-the-art systems rely upon likelihood
models that assume restrictive scene conditions such as tight, high contrast, un-textured
clothing or a static, known background. The system presented here is less restrictive in
that it copes with more normal, textured and loose clothing.

There has been some previous work on learning detailed models of human appear-
ance. Sidenbladh and Black [10] learned the distribution of edge, ridge and optical flow
responses from images. They observed that edge and ridge cues provide sparse informa-
tion about limb appearance. Sidenbladh et al. [11] used a modified PCA algorithm to
account for viewpoint to find the principal components of texture and use these in a gen-
erative tracking framework. However, these systems had the disadvantage of requiring
the appearance to be learned off-line.

Once a model is established, an algorithm is required to estimate the posterior distri-
bution. Estimation in the case of human tracking is difficult because of the high dimen-
sionality, occlusion, clutter, loss of depth and the nature of the kinematic structure of the
body. These often result in a non-Gaussian, multi-modal distribution for which there is no
analytic solution to the filtering problem [1, 5, 13]. Therefore, there has been much inter-
est recently in sophisticated particle filtering techniques that can represent and efficiently
infer the posterior distribution, including particle annealing [3], genetic cross-over and
state space partitioning [4], local optimisation [2, 12] and lattice sampling [7]. A further
benefit of the formulation presented in this paper is that estimation is eased due to the
smooth, broad properties of the likelihood response.

2 Method
To begin we ask the question: what are the properties of a good likelihood formulation
p(Yt|Xt)? A good generative model will potentially utilise all the input data and will be
able to accurately re-synthesise an appropriate representation of the input data given the
solution. Furthermore, a good model should have characteristics which allow for easy
and accurate estimation, such as a strong, broad response around the solution and a large
discriminatory power to reduce secondary maxima. However, the dimensionality of the
integral in the Bayesian filtering equation (2) grows with time as we consider more and
more information and direct evaluation becomes prohibitively complex. Therefore, it is



usual to consider the state evolution to be a Markov process and the distributions can then
be found recursively using:

p(xt|Yt) ∝ p(yt|xt)

∫
p(xt|xt−1)p(xt−1|Yt−1)dxt−1 (3)

A difficulty in the case of visual human tracking, where yt is an image, is that, due to
the wide variety in a subject’s appearance, the single frame likelihood model, p(yt|xt),
is not known a priori. Such models may be constructed by making assumptions on the
scene conditions but the assumptions do not allow for accurate estimation in other en-
vironments. Therefore, we conclude that in real world scenarios, where such conditions
are not known, accurate inference, under the Markov assumption, requires the state, x,
to include appearance information. This is the basic idea surrounding on-line, adaptive
background models, such as in [6].

The central problem is that of estimating a complex changing appearance given the
limited data available. The problem is hopelessly under constrained without prior knowl-
edge. Furthermore, there is the question of computational efficiency. In the remainder of
this paper we present and evaluate a scheme to model the appearance of humans using a
computationally efficient, on-line estimation technique. The synthesis of views requires
knowledge of both the body’s structure and surface properties and therefore the state de-
scription is partitioned into geometric and appearance components, x = (xg, xa).

2.1 Geometric Model
The body is highly deformable and exact modelling of its form is infeasible in this context.
Its important properties can be captured using an articulated body model. In this system a
3D geometric model is used since the body’s surface can, in general, vary with viewpoint.
A 3D articulated body model is a collection of 3D geometric primitives connected in a
hierarchical fashion to form a kinematic tree. The state space, xg , then becomes the rela-
tive position and orientation of the primitives and their shapes and sizes. The advantages
of this description are that it has a lower dimensionality, is computationally efficient, cap-
tures the kinematic structure of the body, allows for easy encoding of prior knowledge
such as joint limits and automatically handles self occlusion. For a discussion of more
advanced geometric models see, for example, [8].

Each of the geometric primitives, indexed by b, has a surface that is naturally described
using some co-ordinate system, denoted in this paper by ωb. For example, the surface of
a cylinder is conveniently described by a length and angle. A point on the subject is
then specified by the pair (b, ωb). To project a surface point into the image plane the
co-ordinates are converted to Cartesian form. Homogeneous, relative transformations are
chained together to project up the kinematic tree into world co-ordinates and finally, using
a camera model, into the image plane.

In the current implementation we represent the body using truncated, elliptic cross-
section cylinders with constant, known size and shape. The camera is modelled using
an orthographic projection since the sequences under consideration do not contain strong
perspective effects. However, the extension to perspective projection is straightforward.
The system currently allows no independent head, hand or foot motion leaving a total of
22 degrees of freedom, encoded as 3 root translations and 19 Euler angles (four for each



limb and three for the trunk). Prior knowledge on joint angles is encoded using a ramp
function at boundaries.

2.2 Appearance Model
Due to body model inaccuracies, discretisation and noise, a feature such as colour or a
local filter response, at a point on the surface of a body model will have a probability
distribution rather than a single value. The appearance component of the state is the set of
feature distributions for the whole body, or equivalently over all points, Ωb, on each body
part b:

xa = {p(b,ωb) : 0 < b ≤ B,ωb ∈ Ωb}. (4)

In this paper we consider colour distributions only. Since clothing is also often textured
these distributions can be multi-modal. We therefore propose using normalised multi-
dimensional histograms to represent these distributions and denote them by H(b,ωb). In
general these distributions are not known a priori. Some distributions, such as skin, can be
estimated off-line and this framework also allows us to incorporate such prior knowledge
in a principled fashion. This helps with automating initialisation, for example.

Estimating the feature distributions from the limited data available is difficult, espe-
cially when it is considered that the distributions are varying over time due to illumination
changes and clothing movement. However, we observe that many of the points on the sur-
face of the body belong to the same piece of clothing and will therefore often have similar
distributions. We can therefore use the histograms from other points on the body to esti-
mate an unknown bin q:

H(b,ωb)(q) ≈
∑
b′

∑
ω′

b

H(b′,ω′

b
)(q)p(H(b′,ω′

b
)|H(b,ωb)) (5)

The conditional probability can be modelled in a Bayesian fashion using a likelihood
determined from a similarity measure, S, on the known histogram bins and a prior deter-
mined from knowledge of clothing structure:

p(H(b′,ω′)|H(b,ωb)) ≈ S(H(b′,ω′), H(b,ωb))P(b,ω),(b′,ω′) (6)

However, direct use of the sum in (5) is not computationally feasible since it involves
summing over all points on the body for each unestimated histogram bin. Therefore, we
propose to group regions based upon the observation that large contributions to the sum
must be similar to the histogram in question and therefore similar to each other. Therefore,
the sum is reasonably well approximated by the average bin value taken from the group
of similar regions. Figure 1 illustrates our model.

To perform region merging, a threshold K is introduced. It controls the level of detail
represented by the system and elegantly encodes the model order. When K is large,
the system behaves like a template tracker by preserving individual regions. When K is
small, the system behaves like a blob tracker, ultimately representing the person using a
single distribution. For a particular sequence, with a particular resolution, there will be
an optimal choice of threshold that allows the appearance to be well estimated without
excessive loss of local structure. The merging decision criterion then becomes:



Figure 1: An articulated body model with feature distributions defined over surface
patches. These patches are grouped based upon similarity and knowledge of clothing
structure. The model is overlayed on a frame from a waving gesture sequence used
throughout the paper to illustrate ideas.

S(Hb,ωb
, Hb′,ω′

b

) >
K

P(b,ωb),(b′,ω′

b
)

(7)

Merging is an O(u2) operation, where u is the number of unique regions. However,
this cost is greatly outweighed by the improvement in computational efficiency due to
reductions in the number of region comparisons and storage overhead. Since regions can
erroneously merge we also introduce a splitting operation. However, performing this in
the same manner as merging requires unique histograms to be stored for every atomic
region, resulting in a large storage overhead. Therefore, we currently use an ad hoc
splitting criterion based upon a threshold on the sum of back-projections in an atomic
region from the current image to split.

The clothing structure prior is learned from example images of differently clothed
people by manually aligning the model to the image and performing exhaustive pairwise
comparisons. The prior is set to the average of the observed similarities. Examples are
shown in Table 1.

b ωb b′ ω′
b P(b,ωb,b′,ω′

b
)

Upper Arm l, θ Upper Arm l, θ + δθ 0.9
Head l, θ Hand - 0.7

Upper Arm l, θ Upper Leg - 0.3

Table 1: Example histogram merge priors

2.3 Likelihood Formulation
To compare a hypothesised geometric configuration to the image, hypothesised feature
histograms, H ′, are collected by casting a ray at each pixel into the world and determining



its point of intersection with the hypothesised body model. The hypothesised histograms
are compared to the model histograms using a similarity measure. The likelihood as
defined in Equation (8) is the sum of similarities weighted by the visibility of the region
in the image, where V denotes the set of pixels corresponding to the body.

p(yt|xt) ∝

∑
{V } S(H ′

(b,ω)|H(b,ω))

|V |
(8)

2.3.1 Region Comparison Techniques

There are many histogram similarity measures, these include inter-bin measures such as
the Bhattacharyya coefficient, the Jeffrey distance, the Minkowski distance, Intersection,
χ2, and the Kullback Leibler divergence and intra-bin measures such as QBIC and the
Earth movers distance. Inter-bin measures are favoured here because of their lower com-
putational cost. Sum of histogram back-projections, which is much quicker to calculate
online, can also be used but allows less discriminatory power since it uses the measure-
ments independently and ignores how these might be distributed.

Figure 2 shows different similarity measures as the model upper right arm undergoes
image-plane rotation. It can be seen that some similarity measures produce smoother
responses and are less sensitive to the amount of grouping. A lower number of regions
tends to result in a smoother likelihood response. We found that tracking and grouping
using the Bhattacharyya coefficient worked best. The back-projection works well when
every background pixel is sufficiently different from the foreground.

The posterior distribution induced by this likelihood model is multi-modal and can-
not be used to disambiguate certain poses. For example, consider the waving sequence
where the lower arm, which is uniformly coloured, rotates in depth. The hypothesised
histograms will remain approximately constant and therefore so will the likelihood. In
addition, regions that are hidden do not contribute. To overcome this problem multiple
solutions should be propagated. However, due to the difficulties of this approach with an
adaptive appearance model we choose to condition the likelihood to maximise foreground
usage, this is illustrated in Figure 3. The background is modelled pixel-wise using Gaus-
sians in chromaticity-intensity space which are recursively updated using the equations
from [6]. We stress that the likelihood formulation does not require a static background,
rather a more advanced representation of the posterior distribution is required.

2.4 Inference
The focus of this paper is not a new inference technique. However, the advantages of this
formulation over existing ones, such as its broad, smooth likelihood profile, can allow for
easier and more accurate inference. In the first frame the geometric model is manually
initialised. A hierarchical, best-first search is then performed by coarsely sampling the
state space around an estimate given by a constant velocity motion model. The number
and spacing of samples is chosen empirically using the similarity responses. For example,
in the case of the upper arm with three degrees of freedom, sampling up to four half-
widths in all directions at two half-width intervals requires 64 samples. This estimate
is then used to seed a multi-dimensional gradient-based search and this has the effect
of reducing the chance of getting trapped in local maxima and therefore allows more
general motion. Hierarchical sampling is particularly useful in the case of the human



Figure 2: Plots of different similarity measures vs. upper arm rotation for three levels of
grouping: dashed= 5 regions, solid= 20 regions, dotted= 120 regions.
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Figure 3: Abscissa: out of plane rotation, ordinate: in plane rotations. The central uniform
ridge in the first plot has a large likelihood and illustrates the inability of the model to
resolve out of plane rotations. The second plot illustrates how conditioning the likelihood
to maximise foreground usage results in a single solution.



Figure 4: Results from region merging. Left: examples of the largest grouped regions.
Right: plot showing the behaviour of the grouping algorithm for three different merge
thresholds.

body where occlusion causes gradient information to be lost. Once the maximum is found
the appearance model is updated recursively as in Equation (9). To make the tracker more
robust and reduce the chance of the tracker diverging we update the appearance model
using only those pixels that are sufficiently different from the background.

Ht = kH ′
t + (1 − k)Ht−1 (9)

3 Implementation and Results
Currently the system uses zeroth-order chromaticity-intensity statistics and histogram
sizes are chosen using heuristics based upon the number of expected samples. The system
has prior information on clothing structure, but no colour prior.

The system is implemented in C++. Use of caching techniques, preprocessing of his-
togram bins, efficient model projection and extensive loop unrolling result in very efficient
likelihood calculations, the main computational burden for most trackers. The system re-
quires around 100MB to store the appearance model and processes each frame in around
10 seconds.

Figure 4 shows how the region grouping algorithm behaves for the waving sequence.
It can be seen that the system quickly converges to a stable region representation. Figure 5
shows the system successfully tracking in a cluttered indoor scene. The subject is wearing
loose-fitting clothes with both textured and plain regions. The background contains many
edges, and similarly coloured objects. The reader is referred to the video sequence at
www.computing.dundee.ac.uk/staff/troberts/. The sequence was captured at 12 frames
per second, at a resolution of 640 × 480. This is a smaller than usual frame-rate making
tracking more difficult. In this sequence the appearance is stored in 12 × 12 × 6 bin
histograms.



Figure 5: Tracking a highly textured subject in a cluttered indoor scene.

4 Conclusions and Future Work
A likelihood formulation was presented that models the region statistics on the surface
of an articulated body model to allow for detailed, accurate pose estimation in unknown
scenes . Two problems with this approach are histogram density estimation and compu-
tational efficiency. An adaptive region grouping algorithm was derived to overcome these
difficulties and its benefits where illustrated.

The method is very extensible. In the immediate future we will be testing different
feature statistics. We also plan to use the feature histograms to construct an importance
sampling function which we believe will allow for a much greater range of movements
and recovery from error. Another possible inference extension is to build a motion model
using PCA and coarsely sample along the eigenvectors. We plan to address the current
problem of propagating multiple states and to use a more principled histogram update
technique. In the more distant future we will investigate switching between different
features online to improve tracker performance.
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