A NOVEL SUPERVISED METHOD FOR CORNEAL FIBRES TORTUOSITY CLASSIFICATION USING A MULTI-SCALE-MULTI-WINDOW APPROACH

Annunziata R. ¹, Kheirkhah A. ², Aggarwal S. ², Cavalcanti B. M. ², Hamrah P. ², Trucco E. ¹

¹University of Dundee, School of Computing, CVIP and VAMPIRE groups, Dundee, UK

Abstract

We present a novel method for classifying corneal nerves images in 4 levels of tortuosity. We use multi-scale features and a new multi-window algorithm for curvature estimation. A wrapper using logistic ordinal regression or an embedded method based on random forests is applied for feature and scale selection. Tested with 90 images classified by 3 clinicians, the accuracy of our system is 88.89%, 76.67%, 77.22% against each observer, outperforming the best one hold out (76.67%,76.67%,75%).

Clinical Motivation

- ► Corneal fibres appear QUALITATIVELY more tortuous in some diseases (e.g. keratoconic corneas [1, 2], dry eyes [3]);
- ➤ Tortuosity significantly higher in Diabetic Retinopathy (DR), one of the leading pathological causes of blindness among working-age people in developed countries [4].

Technical Motivation

MAIN ISSUE: QUALITATIVE assessment leads to high inter-observer and intra-observer variability.

GOAL: to obtain an objective and reproducible tortuosity evaluation.

- Q1. Does scale play a role?
- Q2. Curvature seems a good feature: how accurately can it be estimated?
- Q3. Previous work: is this the right approach?

Proposed Approaches

IDEA: tortuosity is likely to be based on ophthalmologist's experience and hardly captured by a formula - hence classifier:

A Multiple-Window Approach for Digital Curvature Estimation

- 1. At each pixel, apply local ellipse fitting and line fitting using the smallest window size in a pre-defined range $R = [w_m, w_M]$;
- choose the best fitting function (ellipse-arc or line) based on the sum of squared errors;
- 3. if ellipse-arc is the best fitting function, compute curvature using analytical derivatives on the estimated ellipse;
- 4. repeat 1. 3. for all windows in R;
- 5. select the maximum estimated curvature over all windows after median filtering to eliminate small, spurious peaks.

Experiments: Digital Curvature Estimation

- ➤ Discretised circles with radii ranging from 10 to 80 pixels are corrupted by radial additive white Gaussian noise;
- ► Performance is quantified using the ARUE:

$$ARUE = \frac{1}{N} \sum_{i=1}^{N} \frac{|\frac{1}{r} - C_{est}(i)|}{\frac{1}{r}}.$$
 (1)

Comparison with Matas et al. method using fixed window size

Original boundary

Matas et al. approach

Proposed approach

Experiments: Corneal Nerves Images Classification

- ▶ Data set: 100 images, 4 levels of tortuosity, 3 ophthalmologists;
- ▶ Poor inter-observer agreement (< 50%), the consensus ground truth (CGT 90 images) is used instead;
- ► 3 experiments:

Are multiple scales effective? (MLOR)

Association with CGT

Perfomance measures	MLOR	OSVM
Acc	84.44%	80.56%
Se	69.77%	61.94%
Sp	89.50%	86.86%
Ppv	69.75%	62.61%
Npv	89.48%	86.84%
MSE	0.3444	0.4222
MAE	0.3222	0.4000

Association with individual GT (Accuracy)

	AK	PH	SA	MLOR
AK	100%	76.67%	75%	88.89%
PH	76.67%	100%	73.89%	76.67%
SA	75%	73.89%	100%	77.22%

Performance is evaluated using double cross-validation (FS + TESTING).

Conclusions

- ➤ Trained with CGT and tested against each observer, our MLOR-based approach outperforms the best observer hold out (benchmark);
- ➤ Scale seems to play a role and a multi-scale approach is effective;
- ► Supervised approach instead of single formula for tortuosity estimation;
- ► New approach for digital curvature estimation;
- ► First to propose an automatic method capable of predicting more than 3 tortuosity levels.

References

- [1] Patel D. V., Ku J. Y. F., Johnson R., McGhee C. N. J. . "Laser scanning in vivo confocal microscopy and quantitative aesthesiometry reveal decreased corneal innervation and sensation in keratoconus". *Eye*, 23(3), 586-592 (2009).
- [2] Niederer R. L., Perumal D., Sherwin T., McGhee C. N. . "Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea". *Investigative ophthalmology & visual science*, 49(7), 2964-2970 (2008).
- [3] Cruzat A., Pavan-Langston D., Hamrah P. . "In vivo confocal microscopy of corneal nerves: analysis and clinical correlation". *In Seminars in ophthalmology*, vol. 25, No. 5-6, pp. 171-177, New York: Informa Healthcare (2010).
- [4] De Cillá S., Ranno S., Carini E., Fogagnolo P., Ceresara G., Orzalesi N., Rossetti L. M. . "Corneal subbasal nerves changes in patients with diabetic retinopathy: an in vivo confocal study". *Investigative ophthalmology & visual science*, 50(11), 5155-5158 (2009).