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Temporal dependency is a very important cue for modeling human actions. However, approaches using
latent topics models, e.g., probabilistic latent semantic analysis (pLSA), employ the bag of words assump-
tion therefore word dependencies are usually ignored. In this work, we propose a new approach structural
pLSA (SpLSA) to model explicitly word orders by introducing latent variables. More specifically, we
develop an action categorization approach that learns action representations as the distribution of latent
topics in an unsupervised way, where each action frame is characterized by a codebook representation of
local shape context. The effectiveness of this approach is evaluated using both the WEIZMANN dataset
and the MIT dataset. Results show that the proposed approach outperforms the standard pLSA. Addition-
ally, our approach is compared favorably with six existing models including GMM, logistic regression,
HMM, SVM, CRF, and HCRF given the same feature representation. These comparative results show that
our approach achieves higher categorization accuracy than the five existing models and is comparable to
the state-of-the-art hidden conditional random field based model using the same feature set.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Human action recognition is an important and challenging task.
Numerous methods have been proposed either focusing on build-
ing robust action representations or developing recognition mod-
els. In general, there are two key elements in modeling and
recognizing human actions [24]: local appearance and temporal
dependencies. In this section, we briefly review existing work in
the area.
1.1. Motion representations

A great deal of work has been done to represent action
sequences. They can be broadly classified into two categories:
part-based representations and holistic representations. Part-based
motion representation relates to the success of representing
images using a sparse set of interesting points in object images
[23], which offers invariance to rotational and affine changes, as
well as robustness to background clutter. Laptev [19] proposed to
interpret local motion changes by the neighborhoods of the spa-
tial–temporal interest points. This work has been further extended
to motion recognition by a bag of spatial–temporal words
[25,30,20]. Laptev et al. [20] formulated the problem of motion rec-
ognition as a matching of corresponding events in image sequences
ll rights reserved.

Zhang), sgg@dcs.qmul.ac.uk

ong, Action categorization by st
based on an assumption that similar patterns of motion contain
similar events with consistent motion across image sequences.
The motion descriptor is constructed as a bag of local events. The
local velocity adaptation of events allows this approach to recog-
nize motion independently of the scale and Galilean transforma-
tions caused by the relative motion of the camera. One limitation
of this approach is lack of modeling the relative structure of events
in space time because all of the events are treated independently
[20]. Dollar et al. [8] used a denser representation by sampling
the interesting points as local maxima in the spatial direction only,
and achieved better performance than a sparser representation.
Using similar features, Niebles et al. [25] achieved comparable per-
formance with an unsupervised approach, and Nowozin et al. [26]
further improved the performance using a discriminative approach.
It is worth noting that recent study has unveiled some limitations of
interest points based approach for object recognition. When the ob-
ject is small, the detectors cannot produce sufficient detections
[10,42]. The detector of spatial–temporal interest point may suffer
from insufficient detections as well when the motion scale is rela-
tively small at a distance [9]. Therefore the performance of this
approach under such circumstances is still not known.

Holistic approaches usually represent the motion sequences as
a whole. These approaches often rely on dense or global represen-
tations. For global representations, a simple approach is to accu-
mulate all measurements in a video sequence using a global
descriptor, e.g., the motion history image (MHI) [3]. In the MHI
based methods, the temporal influence of motion is encoded as
the intensity differences in the MHI template where the recent
ructural probabilistic latent semantic analysis, Comput. Vis. Image Under-
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1 By ‘structural’, we mean conditional dependencies as in structural learning for
probabilistic graph models.
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motions have higher intensity than the old ones. Inspired by this
approach, Weinland et al. [40] developed a 3D motion representa-
tion called motion history volume using constrained multiple cam-
eras. Boiman and Irani [4] proposed a motion detection approach
by computing the correlation between two spatial–temporal vol-
umes in a dense mode with a 3D sliding window approach. Efros
et al. [9] used smoothed optical flow as the motion descriptor to
classify human actions at a distance. Holistic approaches are
known to be sensitive to the large geometrical variations between
intra-class samples, moving cameras and non-stationary back-
ground. To handle these challenges, those approaches usually
deploy some motion based segmentation techniques and then
compute the motion descriptors in the segmented regions [9].

Another type of holistic approach is to represent actions as a se-
quence of human body shapes. This representation is inspired by
the observation that a time series of 2D silhouettes in the space–
time volume contains both the spatial configuration about the pose
of human figure at anytime (location and orientation of the arms,
legs, and torso, aspect ratio of different body parts) and the dy-
namic information (global body motion and motion of the limbs
relative to body) [15]. To date, silhouette-based action recognition
has received increasing attention [24,36,33,2]. For modeling
objects, shape features contain rich and useful information of the
object and have been demonstrated one of the key object descrip-
tors for object detection in complex scenes [13,27]. Working in
shape is also advantageous to other image representations, such
as the appearance features [5]. For instance, Bosch et al. [5] have
successfully incorporated a shape descriptor with the appearance
features in a pyramid representation, which achieves the state-
of-art recognition performance on the Caltech101 [11] and Caltech
256 [16] datasets with accuracies of 98.2% and 69.8% respectively.
The object shape variations along time contain dynamic informa-
tion of motion as well. Wang et al. [39] have demonstrated that
it is promising to discover human motion categories from static
images, whose features are represented as shape context [39]. Re-
cently, Gorelick et al. [15] worked on 2D silhouette-based action
sequences and represented actions as spatial–temporal shapes.
Their approach exploited the solution to the Poisson shape repre-
sentation to extract various shape properties for classification.
Our motion representation is essentially a temporal sequence con-
taining body shapes. The shape descriptor is inspired by the pio-
neering work of the shape context by Belongie et al. [1] and the
success of bag of features representation for object recognition
[10,42], thus resulting in a codebook representation of local con-
text for each silhouette.

1.2. Motion models

Another important issue for motion recognition is to develop
models to learn the temporal dependencies between consecutive
frames. To date, numerous methods have been proposed with the
vast majority based on graph models. Among them, the hidden
Markov model (HMM) is a baseline approach for modeling tempo-
ral dependencies mainly interpreted by a transition matrix. Its
model parameters are estimated based on the optimization of
the class conditional joint probability distribution between the
observations and the sequence labels, which is marginalized over
a set of hidden variables. Hence, it is a generative method and
not optimized based on the conditional Bayesian information.
Though HMM has shown good performance in many applications,
for the purpose of pattern discrimination, an existing common con-
sensus is that an ideal model in theory should be derived and opti-
mized based on maximizing the discrimination function [14]. Thus,
to this point, HMM is not optimal. To overcome this limitation,
conditional random field (CRF) was introduced recently [35,33].
However, CRF cannot incorporate the need for labeling a whole
Please cite this article in press as: J. Zhang, S. Gong, Action categorization by st
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sequence as an action, and also cannot capture the intermediate
structures using hidden state variables [29]. To overcome these
shortcomings, hidden conditional random field (HCRF) was proposed
in [17,38,29]. Compared to CRF, HCRF is capable of incorporating a
sequence label into the optimization of the probabilities of se-
quence labels conditioned on observations. Recently, Nowozin
et al. [26] proposed a discriminative subsequences mining ap-
proach to find the optimal discriminative subsequence patterns.
In their approach, each video is encoded as a sequence of set of
integers. To train a classifier on such a representation, they ex-
tended the PrefixSpan [28] subsequence mining algorithm in com-
bination with LPBoost [7].

However, all of the above model-based approaches are super-
vised, i.e., the training set has to be manually labeled with varying
degree of supervision. Thus, another interesting direction is to de-
velop unsupervised learning methods, e.g., action recognition by
probabilistic latent semantic analysis (pLSA) [25].

As one of the generic models, pLSA [31] has been successfully
used to discover object categories without prior segmentation.
For instance, Sivic et al. [31] used pLSA to automatically find the
object categories from a large image collection. Fergus et al. [12]
developed a translation and scale invariant pLSA model (TSI-pLSA)
to localize an object from just its name, which extends pLSA to in-
clude spatial information. Inspired by the success of pLSA for object
recognition, researchers have recently applied pLSA for motion
classification. Niebles et al. [25] developed an unsupervised motion
classification approach using pLSA with spatial–temporal words.
However, the approach by Niebles et al. is not capable of localizing
motion in videos. In order to tackle this problem and inspired by
the successful Implicit Shape Model [22] for object detection,
Wong et al. [41] recently extended the pLSA approach to localize
motion categories by including the geometrical constrains be-
tween spatial–temporal patches, which is called pLSA-ISM. This
approach is a promising extension of TSI-pLSA to infer the location
of motion in video sequences. Experimental results show good
localization performance with little presence of background clut-
ter. However, the performance of this method in the presence of
strong background motion clutter is still not known. For the pur-
pose of statistical language modeling, Wang et al. [37] presented
a directed Markov random field that combines n-gram models,
probabilistic context free grammars and pLSA to learn the seman-
tic information. However, as other MRF based approaches, the
training process of this model needs the labels of language
sequences.

The dynamic adjacent dependencies cannot be learnt explicitly
by most of the pLSA based approaches, since the pLSA ignores such
global dependencies in principle. To incorporate those dependen-
cies into the unsupervised learning process by pLSA, we proposed
a structural pLSA (SpLSA),1 where we show that the standard pLSA
is a special case of our model. We then develop an action categori-
zation approach learnt by SpLSA with a codebook representation of
local shape context. We compared our model with six other exist-
ing models using two standard action recognition datasets. In our
experiments, all models were given exactly the same feature sets
to remove any effect from the choice of different features.

The paper is organized as follows. Section 2 describes the prin-
ciples of pLSA. We then present our new model SpLSA and the
learning method in Section 3. Section 4 develops a novel action
categorization approach based on SpLSA with a signature of code-
book of local shape context. We evaluate our approach in Section
5. Section 6 concludes the whole paper and points out some future
work.
ructural probabilistic latent semantic analysis, Comput. Vis. Image Under-
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Fig. 1. Graph models of the pLSA (a) and SpLSA (b) respectively. Nodes are random
variables. Filled nodes are observed and white ones are hidden. Arrows represent
the dependencies between nodes. In (b), the joint probability p(w,Pa(w)jz) can be
written in terms of a product: p(wjPa(w),z)p(Pa(w)jz).
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2. Probabilistic latent semantic analysis

Probabilistic latent semantic analysis (pLSA) was proposed in
[18] and has been extensively studied as a model of a text docu-
ment set. In this model, each document is generatively modeled
as a bag of words, each of which is sampled from a document-spe-
cific mixture of Z latent ‘topic’ distributions. Each topic z is de-
scribed by its distribution p(wjz) over the W possible words of
the dictionary and each document d is characterized by the mix-
ture over Z topics. The T word instances of a document d are trea-
ted as a set of independent samples from the mixture. Letting z
denote the unknown topic (mixture of component) of word wi,
the joint probability of the T words and corresponding d is modeled
as follows:

pðw1;w2; . . . ;wT ;dÞ ¼
YT

i¼1

pðwijdÞpðdÞ

¼
YT

i¼1

X

z2Z

pðwijzÞpðzjdÞpðdÞ; ð1Þ

where Z is the set of possible topics. Besides the document catego-
rization, pLSA has also been applied to computer vision, e.g., object
recognition [32,12]. In those applications, the object images are
considered as a mixture of topics and local patches (often produced
by some interest point detectors [23]) are viewed as words, usually
called visual words. Thus object images are modeled as a mixture of
latent topics that generates each patch independently. Note that
this model ignores the correlation between words based on the
bag of words assumption.

The mixture density of the model, p(wjz) and p(zjd), can be
learnt using an expectation maximization (EM) algorithm. The E
step computes the posterior over the topic, p(zjw,d) and then the
M step updates the densities. Given a set of D documents, the mod-
el parameters are computed by maximizing the log of the following
data likelihood of those documents:

L ¼
YD

m¼1

pðw1;w2; . . . ;wTm ; dmÞ

¼
YD

m¼1

YTm

i¼1

X

z2Z

pðwijzÞpðzjdmÞpðdmÞ; ð2Þ

where Tm is the number of words of document dm. Determining the
most probable topic for a query image/document d is achieved by
locking p(wjz) and iterating with EM to estimate the p(zjd).
3. Structural pLSA

As mentioned before, though, pLSA has achieved promising re-
sults in the application of automatic discovery of object categories,
the original model ignores the relationship between words, i.e., it
considers each word-document draw independent as in Eq. (1).
However in real cases, this is somewhat limited, e.g., local patches
of an object in a static image can have object-specific spatial con-
strains. For action recognition, it is evident that there exist strong
connections between action words, i.e., the action clip at time t is
highly related to other action clips occurred within the same short
period. Thus in order to model such relationships in an unsuper-
vised manner, we propose a structural pLSA (SpLSA). The idea is
to incorporate the associations between words when modeling
the documents, i.e., given a document d and its corresponding
words w1,w2, . . . ,wT, the joint probability is described as follows
when the probabilistic graph represents a Bayesian network as
shown in Fig. 1:
Please cite this article in press as: J. Zhang, S. Gong, Action categorization by st
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pðw1;w2; . . . ;wT ;dÞ ¼ pðdÞpðw1;w2; . . . ;wT jdÞ

¼ pðdÞ
YT

i¼1

pðwijPaðwiÞ;dÞ

¼ pðdÞ
YT

i¼1

X

z2Z

pðwijPaðwiÞ; zÞpðzjdÞ; ð3Þ

where Pa(wi) is the parent set of word wi, excluding z for clear
explanation, because z is the parent of all of the words within the
document.

Note that different definitions of Pa(wi) result in modeling dif-
ferent types of local dependencies. If Pa(wi) = {wj}, that means wi

has only one parent wj and we term the resulting model as the
first-order structural pLSA. If Pa(wi) = {wj,wk}, the resulting model
can be called the second-order structural pLSA, and so on.
3.1. Model learning

Since the model contains latent variables z, it is straightforward
to learn the parameters of the model by maximizing the likelihood
function with the Expectation–Maximization algorithm. The pro-
cedure is quite similar to the learning process of the traditional
pLSA. Given a set of D documents, the likelihood function of the
structural pLSA is defined as follows:

L ¼
YD

m¼1

pðw1;w2; . . . ;wTm ;dmÞ ¼
YD

m¼1

pðdmÞ
YTm

i¼1

pðwijPaðwiÞ; dmÞ; ð4Þ

where Tm is the length of the sequence dm (here we consider the
representation of each clip as a word).

In the E step of the EM algorithm, the expectation of the poster-
ior probability of the latent topic zk is computed based on the
Bayesian rule as follows:
ructural probabilistic latent semantic analysis, Comput. Vis. Image Under-
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pðzkjdm;wi; PaðwiÞÞ ¼
pðwi; PaðwiÞjzkÞpðzkjdmÞPK
l¼1pðwi; PaðwiÞjzlÞpðzljdmÞ

; ð5Þ

where K is the number of topics. The M step simply updates the fol-
lowing equations:

pðwj; PaðwjÞjzkÞ ¼
PD

m¼1nðdm;wj; PaðwjÞÞpðzkjdm;wj; PaðwjÞÞPW
j¼1

PD
m¼1nðdm;wj; PaðwjÞÞpðzkjdm;wj; PaðwjÞÞ

;

ð6Þ

pðzkjdmÞ ¼
PW

j¼1nðdm;wj; PaðwjÞÞpðzkjdm;wj; PaðwjÞÞ
nðdmÞ

: ð7Þ

It is worth to note that the term p(wi,Pa(wi)jz) represents the
joint probability of the co-occurrence of a word and its neighbors.
The term n(dm,wj,Pa(wj)) denotes the number of times the term wj

and its parents Pa(wj) co-occurred in the document dm. Thus it has
the ability of modeling temporal dependencies between words
when applied to action recognition. We can consider the proposed
model as an unsupervised version of the hidden Markov model
without knowing the document (sequence) labels.

4. Structural pLSA for action recognition

4.1. SpLSA for actions

Actions are a time sequence, where temporal dependencies are
one of the key characteristics. To capture such local temporal
dependencies, a simple way in a computationally tractable manner
is to assume Markov property, i.e., the word wi at time t depends
only on previous one wi�1 at time t � 1, i.e., Pa(wi) = {wi�1} (the
words are now ordered in time, i.e., word wi�1 occurred earlier
than wi). By incorporating such dependencies, the first-order SpLSA
can be further written as a compact version of Eq. (3):

pðw1;w2; . . . ;wT ;dÞ ¼ pðdÞ
YT

i¼1

X

z2Z

pðwijwi�1; zÞpðzjdÞ: ð8Þ

Accordingly, the likelihood function of Eq. (4) can be written:

L ¼
YD

m¼1

pðw1;w2; . . . ;wT ;dmÞ ¼
Y

m¼1

pðdmÞ
YT

i¼1

pðwijwi�1;dmÞ: ð9Þ

It is worth to note that the mathematical form of the first-order
SpLSA model (Eq. (8)) for an action sequence is quite similar to the
hidden Markov model if we consider w as a hidden state. Both of
them model the temporal dependencies between consecutive
nodes. A remarkable difference is that first-order SpLSA has an
additional latent variable representing topics z. Another difference
is that, when learning HMMs for multiple actions, the action label
of each sequence usually has to be known. We will compare their
performance in the experimental section.

4.2. Recognition

Determining the model parameters involves fitting the SpLSA to
the entire set of the training samples. During this procedure, we
can learn the topic specific distributions p(w,Pa(w)jz). Each training
sample can be represented by a Z-vector p(zjdtrain) where Z is the
number of topics learnt. In our experiments, we set the number
of topics as the number of action categories in a similar way to
[25]. Note that the training process is totally unsupervised, i.e., it
is not necessary to supply an action label to each sequence or
any segmentation.

For an unseen sequence dtest, we model it as the conditional dis-
tribution of a mixture of topics, i.e., p(zjdtest). It is computed with
EM fold in a similar manner to other pLSA based approaches de-
Please cite this article in press as: J. Zhang, S. Gong, Action categorization by st
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scribed in [18,25,31,41]. In principle, the unseen sequence is pro-
jected onto the simplex spanned by the p(w,Pa(w)jz) learnt
during training, i.e., the mixing coefficients p(zjdtest) are sought
such that the Kullback–Leibler divergence between the measured
empirical distribution and pðw;PaðwÞjdÞ ¼

P
zpðw;PaðwÞjzÞpðzjdtestÞ

is minimized. This is achieved by running EM in a similar manner
to that used in training, but only the coefficients p(zkjdtest) are up-
dated in each M step with learnt p(w,Pa(w)jz) kept fixed. The result
is that each test sequence is represented by a Z vector. We then de-
ploy a nearest neighbor classifier to classify the test samples
against the training set.
4.3. Action features

In our experiments, we are interested in utilizing a feature rep-
resentation for silhouette-based action recognition given images
captured from fixed camera views with stable and/or known
background information. The local shape context descriptor [1]
has shown its promise for shape description. Inspired by this,
our local feature description is in principle the same as the local
shape context. On the other hand, due to the great success of
the bag of visual words in generic object/texture categorization
[42,10] (robustness to change of view points, clutters, intra-class
variation), we are motivated to build a global descriptor in terms
of a bag of local visual shapes. The feature extraction process is
described as follows:

(1) Local shape context modeling. For each human silhouette,
we randomly sample n points on the shape. For each point,
we determine the local support region and extract the local
shape context features according to the method described in
[1]. The dimensionality of the local shape descriptor for each
point on the shape is 60. The number of sample points for
each shape is 100. The distances between those sample
points are normalized by their mean value to achieve scale
invariance.

(2) Codebook construction. We randomly select a number of
action sequences from the training set and use the k-means
algorithm to cluster the descriptors of all of the silhouettes
from the training set within each action separately and then
concatenate those cluster centers together to form a final
codebook. The number of cluster centers per action is
selected experimentally. In order to discriminate this with
the ’words’ used in the experiment, we term the codebook
here as the shapelet codebook, i.e., each code is a representa-
tion of a certain type of shape parts. An example representa-
tion of the codebook is shown in Fig. 2. We have also tried
the much more rigors method GMM for codebook construc-
tion, however, we find that in practical the k-means gives
comparable or even better results than GMM. Possible rea-
sons are the learning of GMM involves estimating a set of
parameters in a very high dimensional space and usually
leads to unstable solutions due to the relatively small num-
ber of the training samples. Due to the simplicity and the
lower computational cost of the k-means against GMM, we
adopt the k-means for codebook construction in all of our
experiments.

(3) Codebook histogram. For each image from either training or
test set, we construct a shapelet codebook histogram as a
global descriptor, where each entry is the frequency of a cer-
tain shapelet prototype occurred in a silhouette image.
Finally every histogram is normalized to have an unit L1
norm.

Fig. 2 shows each step of the feature extraction process.
ructural probabilistic latent semantic analysis, Comput. Vis. Image Under-
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Fig. 3. Image samples of some action categories from the WEIZMANN dataset.

Fig. 2. Illustration of the action feature extraction process based on the local shape context descriptors.
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5. Experiments

5.1. Datasets

We evaluated our model on two different challenging datasets:
(i) Blank et. al [2] and (ii) Wang et. al [38]. We will refer to these
datasets as the WEIZMANN and MIT-CSAIL datasets respectively.
5.1.1. WEIZMANN dataset
This dataset is from [2]. It contains 10 action classes with a total

of 93 low resolution (180 � 144, 25 fps) video sequences showing
nine different people, each performing 10 natural actions such as
‘running’, ‘walking’, ‘jumping-jack’, ‘jumping-forward-on-two-legs’,
‘jumping-in-place-on-two-legs’, ‘galloping-sideways’, ‘waving-two-
hands’, ‘waving-one-hand’, ‘bending’, ‘skipping’. We use all of the
10 classes in our experiment.2 Fig. 3 shows some example action
images from this dataset. Similar to [2], the silhouette of each
frame is extracted based on the subtraction of the median back-
ground from that frame followed by a simple thresholding opera-
tion in color-space. The resulting silhouettes contain ‘leaks’ and
‘intrusions’ due to imperfect subtraction, shadows and color dis-
similarities with the background. The local shape context feature
2 This is different from the settings of [2], where they only used 9 of them.

Please cite this article in press as: J. Zhang, S. Gong, Action categorization by st
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is extracted from each silhouette image and 10 action sequences
are randomly selected to construct the codebook with 20 cluster
centers created per action sequence. Thus, the shapelet codebook
histogram of 200 dimensionality is generated to describe each
frame according to Section 4. In modeling the action sequences,
we need to produce the words mentioned in pLSA or SpLSA (Here
each action sequence corresponds to one document, and each
frame corresponds to one word. Thus for an action sequence, the
word instances are temporally ordered). To do this, we use the k-
means to further cluster the shapelet histograms of all of the
frames into a set of clusters(words). To test the robustness of our
method, we have tried different number of words (see Table 3
for information). We use half of the sequences for training and
the rest for testing. For the experiments, the data split is performed
in a way that the testing dataset has no participants from the train-
ing set.

5.1.2. MIT-CSAIL dataset
This dataset is used in [38]. It includes six classes of arm

gestures: ‘Expand Horizontally’, ‘Expand Vertically’, ‘Point and Back’,
‘Double Back’, ‘Flip Back’, and ‘Shrink Vertically’. These gestures are
performed by thirteen users in front of a stereo camera and an
average of 90 gestures per class were collected. For each image
frame, a 3D cylindrical body model, consisting of a head, torso,
arms and forearms was constructed using a stereo-tracking
ructural probabilistic latent semantic analysis, Comput. Vis. Image Under-
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algorithm [6]. From these body models, both the joint angles and
the relative coordinates of the joints of the arms are used as obser-
vations for our experiments. Since the direct features are available
for fair comparison with the results in [38], so feature extraction
during prepossessing for these sequences is not necessary for this
dataset. We keep the same training/test split as in [38].

5.2. Comparing different action models

In our experiments, we compared several existing model-based
approaches for action recognition. They are described briefly as
follows:

5.2.1. GMM
This is a generative model where each class is learnt as a Gauss-

ian mixture model (GMM), i.e., p(x;Hc) for action class c, where x is
a sample frame of an action sequence. For a frame xt at time t, we
assign its class label based on the maximization of a posterior
probability, i.e., c�t ¼ arg maxcpðHcjxtÞ. For a sequence within time
T, the class label of the whole sequence is determined by a major
voting strategy, i.e., c* = argmaxc(p(c)) with pðcÞ ¼ 1

T

P
t¼1:Td c�t ¼ c

� �
.

In our experiments, the number of mixture components is auto-
matically determined by using the MDL criteria.

Note that GMM assumes the independence between local
observations, thus it has no capability to model the temporal
dependencies between consecutive frames.

5.2.2. Logistic regression (LR)
Compared to GMM, logistic regression is a simple but effective

discriminative method in the family of graph models. Similar to
GMM, it also assumes that there is no interaction between the
nodes. The difference with GMM is that it is optimized based on
the conditional probability given the sample labels. The final class
label of the whole sequence is determined in a similar way to
GMM.

5.2.3. SVM
It is one of the well established classifiers available today. Sim-

ilar to the logistic regression, it is a discriminative method without
the consideration of the dependencies between frames, but opti-
mized by maximizing the separation margin between classes. We
learn a multi-class SVM with RBF kernel, and the best parameters
are learnt by cross validation. We then label each frame by the out-
put of SVM. For a whole sequence, the sequence label is deter-
mined in a similar way to GMM.

5.2.4. HMM
This model is capable of modeling the temporal dependencies

between hidden variables though it is a generative model. In our
experiments, the number of hidden states and the transition ma-
trix are automatically initialized by learning a GMM with the
MDL criteria over the whole training set. We then learn a HMM
for each class respectively, denoted by Mc. Thus for a given se-
quence X, the class label is assigned via c� ¼ arg maxcpðMcjXÞ.

5.2.5. CRF
A conditional random field (CRF) is a discriminative model with

the ability to learn the temporal dependencies between node la-
bels. It is optimized based on the joint probability of node labels
conditioned on the observations. We learn a single CRF for the
whole classes corresponding to each class label, and then infer
the Viterbi path for each test sequence. The label of the whole se-
quence is computed as the most frequently happened frame label
in the Viterbi path.
Please cite this article in press as: J. Zhang, S. Gong, Action categorization by st
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5.2.6. HCRF
A hidden conditional random field is an extension of the CRF by

adding hidden state structures. It is optimized based on conditional
probability of the action sequence label (instead of the node label
in the case of CRF) given the observation of each node. Thus it nat-
urally suits the task of action categorization. In our experiment, we
learn HCRF using the EM algorithm.

5.3. Results

5.3.1. Comparison with pLSA
In order to test the performance of our method, we perform

the experiment of action classification on the Weizmann and
MIT-CSAIL dataset respectively. We investigate the performance
of our method by varying the number of words. Our method is
compared with the standard pLSA based on the same experimental
settings. Table 3 tabulates the classification accuracy on the WEIZ-
MANN dataset, whilst Table 4 gives the results for the MIT-CSAIL
dataset. From this table, we can see that the performance of both
pLSA and SpLSA is not a linear function of the number of words,
while SpLSA is more robust to the change of number of words.

Overall, SpLSA outperforms pLSA and is significantly better than
pLSA when the number of words is small, e.g., performance in-
creases by 14.4% for 10 words and by 2.6% for 200 words on the
MIT-CSAIL dataset; performance increases by 2.5% for 10 words
and by 0.2% for 200 words on the WEIZMANN dataset. This might
indicate that when the number of words is small (less words often
means less informative, since a lot of data points with differences
have been quantized into one word), the word dependencies be-
come significant in the classification. This is somewhat similar to
the observations in object categorization [10,42,21], i.e., pyramid
models with spatial constrains tend to give better results than
orderless bag of words model when the number of words is small,
while their performances become comparable on many datasets
with a large number of words.

In order to examine the performance on each individual cate-
gory, we further give details of the confusion matrix of using SpLSA
on the two datasets in Tables 1 and 2 respectively. From Table 1,
we can see that 8 out of the 10 categories have the classification
accuracy of 100%. The error is caused by the wave 1 and wave 2
categories. For the MIT-CSAIL dataset, 4 out of 6 categories have
the accuracies higher than 93%, while the most difficult categories
are FB and SV. FB is confused more often with EV and PB, while SV
is mostly confused with FB. It is also interesting to note that the
performance gain of SpLSA against pLSA on the MIT-CSAIL dataset
is higher than the one on the WEIZMANN dataset. This indicates
that temporal information (dynamics) plays a more important role
for the MIT-CSAIL dataset than the WEIZMANN dataset, where the
static action shape information of the actor is the key player for
discrimination.

It is worth pointing out that TSI-pLSA [12] and pLSA-ISM [41]
have also been proposed as extensions of pLSA. However, those
models are developed based explicitly on the use of spatial infor-
mation, in particular the coordinates of a local 3D patch, denoted
as xrel in [41]. On one hand, this enables a model to localize the ac-
tion region. But on the other hand, it also limits such models to 3D
local patch based action representations. If spatial information is
not readily available, e.g., in the case of body shape utilized in
our approach, these models would have been reduced to a stan-
dard pLSA, which we have compared with using the identical fea-
ture set discussed in this section.

5.3.2. Comparison with other existing models
We further compare the performance of our approach with

other existing models as described in Section 5.2 available today.
Tables 5 and 6 show the classification results on the WEIZMANN
ructural probabilistic latent semantic analysis, Comput. Vis. Image Under-
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Table 1
confusion matrix of action classification results with SpLSA on the WEIZMANN dataset. The term ‘jack’ represents ‘jumping-jack’, ‘pjump’ for ‘jumping-in-place-on-two-legs’,
‘side’ for ‘galloping-sideways’, ‘wave 1’ for ‘waving-one-hand’ and ‘wave 2’ for ‘waving-two-hands’.

Action Bend Jack Jump Pjump Run Side Walk Wave 1 Wave 2 Skip

Bend 4 1.000
Jack 4 1.000
Jump 4 1.000
Pjump 4 1.000
Run 5 1.000
Side 4 1.000
Walk 5 1.000
Wave 1 2 2 0.500
Wave 2 1 3 0.750
Skip 5 1.000

Table 2
Confusion matrix of action classification results with SpLSA on the MIT-CSAIL dataset.

Action EH EV PB DB FB SV Rate

EH 41 2 1 0.932
EV 2 56 1 0.949
PB 56 2 1 0.949
DB 1 65 0.985
FB 1 11 5 72 1 0.800
SV 5 40 0.889

Table 3
Classification accuracy of action categories using SpLSA with different number of
words on the MIT-CSAIL dataset.

# Words 10 50 100 200

pLSA 0.729 0.851 0.851 0.774
SpLSA 0.873 0.882 0.909 0.800

Table 4
Classification accuracy of action categories using SpLSA with different number of
words on the WEIZMANN dataset.

# Words 10 50 100 200

pLSA 0.877 0.923 0.921 0.898
SpLSA 0.902 0.930 0.930 0.900

Table 5
Classification accuracy of action categories using different models on the MIT-CSAIL
dataset.

Models GMM LR SVM CRF HMM HCRF SpLSA

Accuracy 0.719 0.702 0.747 0.868 0.868 0.915 0.909

Table 6
Classification accuracy of action categories using different models on the WEIZMANN
dataset.

Models GMM LR SVM CRF HMM HCRF SpLSA

Accuracy 0.861 0.899 0.930 0.930 0.907 0.931 0.930
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and MIT-CSAIL dataset respectively. From the comparison of the
results on the MIT-CSAIL dataset as shown in Table 5, we can see
that the graph models with modeling temporal information give
much better results than those graph models without modeling
the temporal information, i.e., CRF, HMM, HCRF, and SpLSA give
significant higher accuracy than GMM, LR, and SVM. Discriminative
methods without modeling temporal information are not a clear
advantage, i.e., SVM and LR perform comparably to GMM. How-
ever, discriminative learning of the latent structure using HCRF is
Please cite this article in press as: J. Zhang, S. Gong, Action categorization by st
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an advantage against the generative learning approach using
HMM. It is surprising to note that the unsupervised SpLSA performs
better than the supervised models of HMM and CRF, and gives com-
parable results to the advanced HCRF approach. This clearly dem-
onstrates the efficacy of the proposed approach.

For the WEIZMANN dataset, we can see that discriminative
methods give better results than generative methods, i.e., SVM
and LR produce higher accuracy than GMM; HCRF and CRF perform
better than HMM. Note that HMM gives slightly better results than
GMM, which shows that temporal information is not a very signif-
icant cue for this dataset. Using temporal information is not a clear
advantage for discriminative learning methods, i.e., HCRF and CRF
perform comparably to SVM and LR. The proposed method gives
good results on this dataset, slightly better than HMM and compa-
rable to HCRF.

6. Discussion and conclusions

In this work, we have presented a new model called structural
pLSA to model the word dependency in a document. Accordingly,
we have developed a novel action categorization approach using
SpLSA with a codebook representation of actions by the local shape
context features. Compared to other models, the learning process
of the approach is unsupervised. Results on two challenging data-
sets show that the performance of SpLSA is superior to pLSA, espe-
cially when the number of words is small. The extensive
comparison with other existing models indicates that the proposed
approach achieves comparable even better results than the super-
vised learning approaches such as HMM, noticeably, comparable
results to the state-of-art approach using HCRF with exactly the
same feature set.

Though silhouettes extraction from still image segmentation is
still a fundamentally challenging task in computer vision, this task
can be simple and easier in many scenarios with fixed cameras in-
stalled in real surveillance applications. In these cases, the appear-
ance of the background is known and a simple background
extraction method usually results in satisfactory segmentation
[15]. In more challenging conditions with the presence of illumina-
tion changes as well as some type of background motion clutter,
the adaptive background modeling approach [34] can be employed
to produce good extraction of human shapes.

In a non-stationary camera setting involving a moving camera
or from a PTZ camera such as some of the action examples cap-
tured in the KTH dataset [30], auto-extract shape data reliably be-
comes challenging due to significant variations in 3D pose, the
speed of motion and distance to the camera from the actions cap-
tured, resulting in significant shape variations. Some degree of
manual correction/semi-supervised labeling is needed. This pro-
cess poses a major undertaken in effort even with well designed
background extraction models, e.g., adaptive GMM model [34],
code book model, or kernel density based model. Thus an interest
ructural probabilistic latent semantic analysis, Comput. Vis. Image Under-
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points based framework [30] is more suitable to this type of data-
set. For future work, it would be interesting to exploit how to com-
bine our approach with a 3D local patch based approach, and to
evaluate the performance of such a combined model against data
captured by non-stationary cameras.

Our model is temporal-shift invariant since the dependencies
do not wary with time. Currently there is no special theoretical
treatment about adaptation to different temporal resolutions. In
practice, the temporal resolution adaptation can be achieved by
training the model with samples of different temporal scales.
Those samples can be created by re-sampling the original se-
quences under different temporal resolutions. It is worth noting
that another popular trend for action recognition is of using
spatial–temporal local interest points. The future work could in-
volve developing hybrid feature representation to incorporate a
global shape descriptor and features of local spatial–temporal
volumes. Extending the current approach for action detection
would be another valuable research direction.
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