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Abstract

This report presents the results of the 2006 PASCAL Visual Object
Classes Challenge (VOC2006). Details of the challenge, data, and evalu-
ation are presented. Participants in the challenge submitted descriptions
of their methods, and these have been included verbatim. This document
should be considered preliminary, and subject to change.
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1 Challenge

The goal of this challenge was to recognize objects from a number of visual
object classes in realistic scenes (i.e. not pre-segmented objects). Ten object
classes are annotated in the data provided:

• bicycle, bus, car, motorbike

• cat, cow, dog, horse, sheep

• person

There were two tasks:

1.1 Classification Task

For each of the ten object classes predict the presence/absence of at least one
object of that class in a test image. The output from your system should be
a real-valued confidence of the object’s presence so that an ROC curve can be
drawn.

1.2 Detection Task

For each of the ten classes predict the bounding boxes of each object of that class
in a test image (if any). Each bounding box should be output with an associated
real-valued confidence of the detection so that a precision/recall curve can be
drawn.

1.3 Timetable

The challenge was run according to the following timetable:

• 14 February 2006: Development kit (training, validation data and soft-
ware) made available.

• 31 March 2006: Test set (without annotation) made available.

• 27 April 2006: Deadline for submission of results.

After completion of the main challenge, a “second round” was run for which
participants were invited to submit additional results. This round was judged
separately from the main challenge. The deadline for submission of second
round results was 30 June 2006.

1.4 Image Sets

There were four sets of images provided, for use in both the classification and
detection tasks.

• train: Training data

• val: Validation data (suggested). The validation data may be used as
additional training data (see below).

• trainval: The union of train and val.
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Table 1: Statistics of the image sets
train val trainval test

img obj img obj img obj img obj

Bicycle 127 161 143 162 270 323 268 326
Bus 93 118 81 117 174 235 180 233
Car 271 427 282 427 553 854 544 854
Cat 192 214 194 215 386 429 388 429

Cow 102 156 104 157 206 313 197 315
Dog 189 211 176 211 365 422 370 423

Horse 129 164 118 162 247 326 254 324
Motorbike 118 138 117 137 235 275 234 274

Person 319 577 347 579 666 1156 675 1153
Sheep 119 211 132 210 251 421 238 422
Total 1277 2377 1341 2377 2618 4754 2686 4753

• test: Test data.

Table 1 summarizes the number of objects and images (containing at least
one object of a given class) for each class and image set. The data is split into
50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets. In total there are 5,304 images, containing 9,507 annotated objects.

1.4.1 Database Rights

The challenge database contains images provided by Microsoft Research Cam-
bridge and collected from the photo-sharing web-site “flickr”. Use of these
images must respect the corresponding terms of use. These are available via
the challenge web pages: http://www.pascal-network.org/challenges/VOC/
voc2006/.

1.4.2 Ground Truth Annotation

Objects of the ten classes listed above are annotated in the ground truth. For
each object, the following annotation is present:

• class: the object class e.g. ‘car’ or ‘bicycle’

• bounding box: an axis-aligned rectangle specifying the extent of the
object visible in the image.

• view: ‘frontal’, ‘rear’, ‘left’ or ‘right’. The views are subjectively marked
to indicate the view of the ‘bulk’ of the object. Some objects have no view
specified.

• ‘truncated’: an object marked as ‘truncated’ indicates that the bound-
ing box specified for the object does not correspond to the full extent of
the object. Truncation may occur for two reasons: i) the object extends
outside the image e.g. an image of a person from the waist up; ii) the
boundary of the object is occluded e.g. a person standing behind a wall.
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• ‘difficult’: an object marked as ‘difficult’ indicates that the object is con-
sidered difficult to recognize, for example an object which is clearly visible
but unidentifiable without substantial use of context. Objects marked as
dificult were ignored in the evaluation of the challenge.

In preparing the ground truth, annotators were given a detailed list of guidelines
on how to complete the annotation. These are reproduced in Appendix A.

1.5 Competitions

Four competitions were defined according to the task and the choice of training
data: (i) taken from the VOC trainval data provided, or (ii) from any source
excluding the VOC test data provided:

No. Task Training data Test data

1 Classification trainval test
2 Classification any but VOC test test
3 Detection trainval test
4 Detection any but VOC test test

Any annotation provided in the VOC train and val sets could be used for
training, for example bounding boxes or particular views e.g. ’frontal’ or ’side’.
Participants were free to perform manual annotation on the training data if they
wished. Manual annotation of the test data to optimize algorithm performance
was not permitted.

In competitions 2 and 4, any source of training data could be used except
the provided test images. Researchers who had pre-built systems trained on
other data were particularly encouraged to participate. The test data includes
images from the Microsoft Research Cambridge object recognition database,
and “flickr” (www.flickr.com); these sources of images could not be used for
training.

For each competition, participants could choose to tackle all, or any subset
of object classes, for example “cars only” or “motorbikes and cars”.

1.6 Evaluation

Participants were expected to submit a single set of results per method em-
ployed. Participants who investigated several algorithms were allowed to submit
one result per method. Changes in algorithm parameters do not constitute a
different method – all parameter tuning had to be conducted using the training
and validation data alone.

1.6.1 Classification Task

The classification task was judged by the Receiver Operating Characteristic
(ROC) curve. The principal quantitative measure used was the area under curve
(AUC). Example code for computing the ROC and AUC measure is provided
in the development kit.

Images which contain only objects marked as ‘difficult’ (section 1.4.2) were
ignored by the evaluation.
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1.6.2 Detection Task

The detection task was judged by the precision/recall curve. The principal quan-
titative measure used was the average precision (AP) as used by TREC. The av-
erage precision is defined thus: for 11 thresholds on recall r ∈ {0, 0.1, . . . , 0.9, 1}
the interpolated precision p̃(r) is computed and the arithmetic mean taken. The
interpolated precision p̃(r) is defined as the maximum precision for which the
corresponding recall is greater than or equal to the threshold r. Example code
for computing the precision/recall and AP measure is provided in the develop-
ment kit.

Detections are considered true or false positives based on the area of overlap
with ground truth bounding boxes. To be considered a correct detection, the
area of overlap ao between the predicted bounding box Bp and ground truth
bounding box Bgt must exceed 50% by the formula:

ao =
area(Bp ∩ Bgt)
area(Bp ∪ Bgt)

(1)

Example code for computing this overlap measure is provided in the develop-
ment kit. Multiple detections of the same object in an image are considered
false detections e.g. 5 detections of a single object is counted as 1 correct detec-
tion and 4 false detections – it is the responsibility of the participant’s system
to filter multiple detections from its output.

Objects marked as ‘difficult’ (section 1.4.2) were ignored by the evaluation.

2 Participants

This section lists (in no significant order) the participants in the challenge who
submitted final results. Each participant has been assigned an identifier based
on the institution and the corresponding author, which is referred to in all results
figures and tables. A description of the method used has been provided by each
participant and is reproduced here.

2.1 AP06 Batra

Participants: Dhruv Batra, Gunhee Kin, Alexei Efros
Affiliation: Carnegie Mellon University,

Advanced Perception class 16-721
E-mail: batradhruv@cmu.edu

We draw a distinction between two kinds of classes in the VOC2006 database,
first kind being the “structured” classes (car, bus, bicycle, motorbike), the sec-
ond being “unstructured/deformable” classes (person, cat, cow, horse, dog,
sheep). We make an observation that while the former possess strict geome-
try which is rarely deformed, the latter can be treated as a texture recognition
problem with consistency in their background acting as context. We work on
two different algorithms to harness these two consistencies.
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Method 1 (for “structured” classes). We pose this problem as a local
feature matching problem between the test images and the annotated training
images (Hand segmented to exact boundaries by us). The feature detector
used was Lowe’s DOG [1]. The local features we experimented with were Yan
Ke’s PCA-SIFT [2] and actual patches cut out of images at proper scales in
Gaussian pyramids. To boost the matching over a NN based scheme, and to
incorporate spatial and geometric constraints in the matched local features, we
used M. Leordeanu et al’s spectral correspondence [3] based matching. Scores
were generated which denoted consistency of matched features. This method,
although robust to small intra-class shape variances, requires a certain class
geometry to be preserved, and this is precisely why we cannot use this method
for highly deformable classes.

Method 2 (for “unstructured” classes). We use color and texture his-
tograms after generating patches by over-segmentation using Jianbo Shi’s Nor-
malized cuts [4] (75 patches are used an image). For each patch, we extract 64-D
RGB histogram as a color descriptor, and 48-D outputs of Leung-Malik Filter
banks as a texture descriptor. In the training step, we generate the color and
texture histograms of all patches in the all images of the training set. We reject
background by manually labeled masks and store only descriptors of patches on
the target object. In the matching step, for each patch of a test image, we find
the nearest neighbor descriptors from a training set, and then assign the nearest
object class. And then, we make a histogram through voting of all patches. The
scores are derived from these voting numbers. The underlying assumption of
this voting based object classification is that most patches on the target ob-
ject are successfully identified, whereas the background patches are randomly
matched.

We would like to thank Antonio Torralba, Bryan Russell, and the organizers
of PASCAL VOC 2006 for letting us use the LabelMe tool to segment and label
the PASCAL VOC training set (as our algorithm required perfect segmenta-
tions).

References
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2.2 AP06 Lee

Participants: David Changsoo Lee, Nik Melchior, Alexei Efros
Affiliation: Carnegie Mellon University,

Advanced Perception class 16-721
E-mail: dlee1@andrew.cmu.edu

We have used the Bag-Of-Words approach. An image is divided into small
patches and classification is performed for each patch. The final classification
is decided by the vote of the classification result of all patches.

Descriptor. For each 16x16 pixel patch, descriptors are computed as follows.

• Color: Top 2 colors in the RGB histogram

• Texture: Histogram of 32 textons. (textons adopted from Martin01)

• Histogram of Oriented Gradients: Proposed by Dalal05. 16x16 pixel patch
is divided into four 8x8 regions. Each 8x8 region gives 18 dimensional
vector, concatenating 4 regions gives a 72 dimensional HOG descriptor.

A total of 7 combination of these 3 descriptors are used. (color, texture, HOG,
color+texture, color+HOG, texture+HOG, color+texture+HOG)

Training. We divide the bounding box of an object into dense overlapping
multiscale patches. We collect all the patches extracted from the bounding box
of the object of interest and quantize them into 300 clusters using K-means.
The same process is performed on image with object of interest including the
background to obtain additional 300 clusters. Finally, the same process is ap-
plied to images that do not contain the object of interest. This is done for all 7
descriptors.

Testing. A classification of a patch is done by determining whether the given
patch is closer to a positive cluster or a negative cluster. There are two weak
classifiers per each descriptor, one trained on the bounding box and one trained
with background, and there are 7 descriptors, so a total of 14 weak classifiers
are applied to a test patch. A weighted sum of these 14 weak classifiers gives
the final confidence. Weights for weak classifiers are determined by the error on
test set, similar to Adaboost. The average of all the confidence of patches in a
query image is used for determining the final confidence of an image.

2.3 Cambridge

Participants: Jamie Shotton
Affiliation: University of Cambridge

E-mail: jamieshotton@gmail.com

The TextonBoost algorithm [1] was used with minor modifications reflecting
the considerably different problem being posed in the VOC2006 as compared
with the original work. These modifications were as follows:
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1. Training images each had an automatic GrabCut [2] process applied to
convert the bounding box to an approximate segmentation. These seg-
mentations were used as the “ground truth” for training the classifier.

2. A “forest” of 10 TextonBoost classifiers was learned on subsets of the
training data, training on all classes simultaneously, and also including a
‘background’ class. The classification results of each classifier were aver-
aged together.

3. Only the shape-texture potentials in the model are used, and no graph-
cuts are run, only the boosted classifier; hence a distribution over class
labels is obtained at each pixel.

4. For the classification challenge, the confidence value is given as
1
N

∑
i p(ci = c|I) where N is the number of pixels in image I, and

p(ci = c|I) is the probability that the inferred class label at pixel i is
the class in question c.

5. For the detection challenge, the maximum a-posteriori class labels are
found, and contiguously segmented regions which contain at least 1000
pixels are found. The smallest rectangle that bounds all pixels of a given
region forms a detection.

References

[1] J. Shotton, J. Winn, C. Rother and A. Criminisi. TextonBoost: Joint
appearance, shape and context modelling for multi-class object recognition
and segmentation. In Proc. ECCV, pages I:1–15, 2006.

[2] C. Rother, V. Kolmogorov and A. Blake. GrabCut: Interactive foreground
extraction using iterated graph cuts. ACM Transactions on Graphics
(SIGGRAPH’04), 2004.

2.4 ENSMP

Participants: Fabien Moutarde
Affiliation: Robotics Laboratory, Ecole des Mines de Paris

E-mail: fabien.moutarde@ensmp.fr

The detectors used are obtained as boosted assemblies of simple visual fea-
tures, as described in the 3 papers included in this directory, respectively pub-
lished or accepted in:

[1] “YEF real-time object detection”, Y. Abramson, B. Steux and H. Gho-
rayeb, Proc. of Intl. Workshop on Automatic Learning and Real-Time
(ALART05), Siegen, Germany (2005).

[2] “SEmi-automatic VIsuaL LEarning (SEVILLE): a tutorial on active learn-
ing for visual object recognition”, Y. Abramson and Y. Freund, Proc. of
IEEE International Conference on Computer Vision and Pattern Recog-
nition (CVPR05), San Diego (2005)
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[3] “Combining AdaBoost with a Hill-Climbing evolutionary feature search
for efficient training of performant visual object detectors”, Y. Abramson,
F. Moutarde, B. Steux and B. Stanciulescu, accepted for presentation at
FLINS2006 conference on Applied Computational Intelligence (Genova,
Italy, 29-31 August 2006).

More precisely, the car detections were obtained as simple *union* of detec-
tions from 2 different detectors:

• a “lateral-view car detector”

• a “rear-front-view car detector”

The first one examines rectangles with width= 2.3∗height, while the second
one examines square areas. In both cases, positive examples were generated
by automatically extracting (thanks to annotations files) from the trainval set
images about 10 small images per annotated object, all centered on the object
but with slightly randomized margin around and center offset, and cropped to
normalize to desired width/height ratio; then only “acceptable” images (i.e.
with the good car orientation, not truncated, etc.. ) were selected. The result
was:

• one set of ∼2500 positive rectangular images of “clean” lateral-views of
cars,

• one set of ∼1500 positive square images of “clean” rear-or-front-views of
cars.

Two small (typically 100-200) initial sets of negative examples of various sizes
(but the 2 respective desired width/height ratio) were manually extracted from
trainval images. Those initial negative sets were then semi-automatically en-
riched by the iterative procedure described in [2] (i.e. building first crude de-
tectors to generate false positive detections to be added to negative examples,
retrain with the bigger training set, etc...). The typical size of the negative set
at the final stage (i.e. the one used for training the final detector evaluated)
is 5000 to 6000. All examples (positive or negative) are subimages of train-
val images (surrounded by a black border). Each final detector assembles 600
weighted “Control-Point” features (see [1] for details), and it scans the image at
various resolutions in order to detect object of any size bigger than the smallest
resolution (i.e. 46x20 pixels for the lateral car detector, 32x32 pixels for the
rear-front car detector).

The cow detector is obtained in the same way, but uses only one detec-
tor trained to detect only lateral-views of standing-up cows (in subimages with
width/height=1.4, and bigger than minimum size 56x40). The final training
set used for training the final detector contains 2300 positive rectangular im-
ages of “clean” lateral-views of standing-up cows, and 5000 negative examples
mostly collected semi-automatically. All examples (positive or negative) are
subimages of trainval images (surrounded by a black border). The cow-detector
performance is clearly lower than the car detector, as lateral-viewed-standing-up
cows represent only a relatively small part of all annotated cows. Also, there
is obviously some confusion with sheeps, horses, dogs (or even cats) viewed in
the same “lateral” position, and it is probable that including explicitly in the
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negative examples a significant number of ROIs centered on those “confusing”
objects would lead to a better performance, but it was too late to execute and
evaluate one more training before challenge deadline... It is also very probable
that some “union of detectors” strategy (i.e. using also a front-viewed-cows
detector, and simply cumulate the detections of both cow detectors) would sig-
nificantly improve the global detection rate, as in the car case, but again we did
not have time to finish this before challenge deadline.

Note: the typical computation time for each detector on a standard 3Ghz
desktop is around 0.5 to 7 seconds per image (depending on the image size, and
on the minimum detection window size).

2.5 INRIA Douze

Participants: Matthijs Douze, Navneet Dalal
Affiliation: INRIA Rhones-Alpes

E-mail: matthijs.douze@inrialpes.fr

We used the same method as that of the 2005 Pascal Challenge (described in
“Histograms of Oriented Gradients for Human Detection”, Navneet Dalal and
Bill Triggs, CVPR05).

For the comp3 * results, the learning was done on the bounding boxes not
marked as difficult or truncated. The ground truth orientation was not taken
into account. The results on the classes cat, dog and horse were too bad to be
significant.

comp4 det test person.txt was trained on our own person dataset. On the
validation dataset it performed better than the corresponding comp3 result,
presumably thanks to more appropriate annotations.

2.6 INRIA Laptev

Participants: Ivan Laptev
Affiliation: IRISA / INRIA Rennes

E-mail: ivan.laptev@inria.fr

We detect objects using a window-scanning approach. Each rectangular
window of the image is classified into an object or non-object using AdaBoost
classifier [2]. Inspired by the success of histogram-based descriptors for recogni-
tion [1,5,7,8], we use histograms of gradient orientation as image features. Each
histogram feature is computed for a particular rectangular region in the object
window. A complete set of such features is used to train AdaBoost cascade
classifier. For the detection, a strong classifier based on a subset of selected
histogram features is evaluated rapidly using integral histograms [6]. The speed
of the current implementation is approximately three frames per second on
640 × 480 images. While the method is conceptually similar to [4], we use sev-
eral extensions to improve on the quality of detection. These extensions concern
(i) AdaBoost weak learner in terms of Fisher linear discriminant, (ii) construc-
tion of histogram features and (iii) preparation of the training data. The details
of the method are available in [3].
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We consider task 3 of the PASCAL VOC’06 Challenge and apply the method
to five object classes ’bicycle’, ’cow’, ’horse’, ’motorbike’ and ’person’. For mo-
torbikes we combine results of the side-view and the frontal-view detector. For
bicycles, cows and horses we train side-view detectors only. For people, only
subjects in standing postures are considered for training. We apply detectors
to image sub-windows densely sampled over positions and scales. Multiple re-
sponses of the same detector are clustered in the position-scale space. The size
of resulting clusters is used as a confidence measure of the detection. Due to
the similarity of classes ’cow’ and ’horse’ as well as ’motorbike’ and ’bicycle’ we
systematically reduced the confidence of detections with high scores of similar
classifiers.
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2.7 INRIA Larlus

Participants: Diane Larlus, Frederic Jurie
Affiliation: INRIA Rhone-Alpes

E-mail: diane.larlus@inrialpes.fr

The following method has already competed with success in competition 1
(classification task in test1) during last year challenge.

Our method is based on an SVM classifier trained on feature vectors built
using local image descriptors. Our approach is purely appearance based, i.e.
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it does not explicitly use the local structures of object classes. The learning
consists of four steps. First, we extract local image features using a dense
multi-scale representation. Our novel clustering method is then applied to build
a codebook of visual words. This codebook is used to compute “bag of features”
representation for each image, similar to [2], then an SVM classifier is trained
to separate between object images and the background (the other classes of the
database). In the following we describe in detail each step of our method.

Feature extraction Overlapping local features are extracted on each scale
according to a regular grid defined to be sufficiently dense to represent the
entire image. Our parameters are set to extract approximately 10000 regions per
image. Each region is then represented by a 128 dimensional SIFT descriptor [5],
i.e. a concatenated 8-bin orientation histograms on a 4x4 grid.

Codebook creation The extracted set of dense features has two important
properties. First, it is very populated; the large amount features per image
leads to a total number of few hundreds of thousands for the entire training set
(train+val). Second, the dense feature set is extremely unbalanced as it was
shown in [3]. Therefore, to obtain a discrete set of labels on the descriptors we
have designed a new clustering algorithm [4] taking into account these prop-
erties. The method has two main advantages. It can discover low populated
regions of the descriptor space, and it can easily cope with large amount of
descriptors.

Our iterative approach discovers new clusters at each step by consecutively
calling a sampling and a k-median algorithm until the required total number
of clusters are found. In order to decrease the importance of highly populated
regions we use biased sampling: new regions are discovered far enough from
previously found centers. This is realized by introducing an influence radius to
affect points close to already found centers. All affected descriptors are then
excluded from any further sampling. The influence radius determines an affecta-
tion ball around each center. All descriptors within these balls are removed and
the remaining portion is then random sampled. The influence radius (r = 0.6)
and the total number of clusters (k = 5000) are parameters of our method.

The biased sampling is followed by the online median algorithm proposed by
Mettu and Plaxton [6]. Their method is based on the facility location problem
and chooses the centers one by one. At each iteration of our algorithm we
discover 50 new centers by this algorithm.

Image quantization Both learning and testing images are represented by the
bag of features approach [2], i.e by frequency histograms computed using the
occurrence of each visual word of our codebook. We associate each descriptor to
the closest codebook element. To measure the distance between SIFT features
we used the Euclidean distance as in [5].

Classification We used the implementation of [1] to train linear SVM classi-
fiers on the normalized image histograms.
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2.8 INRIA Marszalek

Participants: Marcin Marszalek1, Jianguo Zhang2, Cordelia Schmid1

Affiliation: 1INRIA Rhone-Alpes; 2Queen Mary, University of London
E-mail: marcin.marszalek@inrialpes.fr

The submitted results were obtained using an extended version of our local
features and kernels framework [7]. We start by finding a sparse set of salient
image regions using the Harris-Laplace [3] and the Laplacian [1] interest point
detectors. The two sets of interest points are kept separately and form two
channels. The local regions are described by the SIFT [2] descriptor combined
with a local hue-histogram [5]. The images are represented as a histogram of
visual words drawn from a vocabulary, resulting in a bag-of-features representa-
tion [6]. A problem-specific vocabulary is constructed by separately clustering
features from the positive and the negative training examples. The classifica-
tion is performed with a non-linear Support Vector Machine [4]. We have used
channels combination and χ2 kernel as in [7].
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2.9 INRIA Moosmann

Participants: Frank Moosmann
Affiliation: INRIA Rhone-Alpes

E-mail: frank.moosmann@inrialpes.fr

The method used follows the method described in [1]. First random sub-
windows are extracted from the training images (random size, random position)
and resized to 16x16 pixel. Then a wavelet-transform (Haar basis functions) is
performed on each color channel. Extremely randomized trees are then used to
cluster the labeled training features in a supervised way. The leaf nodes form
the visual vocabulary. A linear SVM is afterwards trained with binarized his-
tograms, created from the training images. The extraction of features is done
as before (but on the whole image) and the PDF responsible for the selection of
the random windows is adjusted after each selection and propagation through
the trees depending on the output of the trees. This leads to more features to
be extracted in regions where the object is estimated. To build the trees 50000
features were extracted in total. To create histograms 10000 features per image
were used.
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2.10 INRIA Nowak

Participants: Eric Nowak
Affiliation: INRIA Rhone-Alpes

E-mail: eric.nowak@inrialpes.fr

The method is the one described in: Eric Nowak, Frederic Jurie, Bill Triggs,
Sampling Strategies for Bag-of-Features Image Classification, European Confer-
ence on Computer Vision 2006.
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It is based on the standard Bag-Of-Features algorithm, except:

• 10000 interest points are randomly sampled per image.

• a large generic codebook (4000 elements) is built with online k-means.

• feature matrices are normalized with an adaptive thresholding.

2.11 INSARouen

Participants: F. Suard, Alain Rakotomamonjy
Affiliation: INSA de Rouen

E-mail: alain.rakoto@insa-rouen.fr

The approach we have used is based on dense sift representation of images.
Each image is represented according to a feature vector which is based on the
occurrence of a codebook sift representation in the image. The codebook has
been build iteratively by using a L1 penalized learning algorithm (Least Angle
Regression).

Given a learning and a validation set, we have selected at random a set of
patches and use them as a codebook, we learn the decision function and then
keep the set of patches that maximizes the AUC. and we iterate this procedure
a 100 times.

The learning algorithm is a Least Angle Regression algorithm.

2.12 KUL

Participants: Alexander Thomas1, Vittorio Ferrari3, Bastian Leibe2

Tinne Tuytelaars1, Bernt Schiele2, Luc Van Gool1

Affiliation: 1KU Leuven, 2TU Darmstadt, 3INRIA Rhones-Alpes
E-mail: athomas@esat.kuleuven.be

This method is a combination of the ISM model by Leibe & Schiele [2] and
the multi-view object recognition system from Ferrari et al. [3]. The goal of this
system is to greatly reduce the computational cost of a battery of separate de-
tectors trained on multiple views, while achieving equal or better performance.
The training set for this system consists of images from several different in-
stances of the object class. For each object, there need to be at least a few
images from different viewpoints (which is why we can only tackle competitions
2 and 4). Viewpoints are roughly aligned to a set of reference viewpoints. For
the motorbike model that was used for this challenge, 16 viewpoints were used
in a circle around the motorbikes (i.e. the views are 22.5 degrees apart). There
are 41 motorbikes in the training set (11 more than in [1]), with an average
of 11 views per motorbike. For each image, a segmentation is provided which
separates figure from background (this segmentation may be quite rough).

The first stage of training a model with our system, is to use the methods
from [3] to derive multi-view region tracks for each training object. Next, for
each viewpoint an ISM model like in [2] is trained, yielding a battery of detectors.
The details of these two steps are not explained here, as they can be reviewed
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in their respective publications [2,3]. One key concept from the ISM system,
however, are so-called occurrences. For each entry in the appearance codebook
of an ISM, a set of occurrences is stored. An occurrence is the relative position
to the center of the training object, where that codebook entry matched in the
training image. The next step in constructing the multi-view model, is finding
relations between the ISM models, by using the multi-view tracks. If two regions
in a multi-view track match sufficiently with two occurrences in the same two
views of the same object, an activation link is established between these two
occurrences. The final model consists of the set of ISM models, together with
their activation links.

The recognition procedure works as follows. First, the codebooks for all the
ISM models (16 in the case of our motorbike model) are matched to features
extracted from the test image. Like in [2], each ISM then casts votes in its
own voting space, based on the occurrences. Based on initial hypotheses for
object instances in these voting spaces, we select a set of candidate viewpoints
that are likely to correspond to the pose of the object in the image. This is
done by looking for clusters of hypotheses across neighboring viewpoints. Due
to similarity between adjacent viewpoints, a strong hypothesis in the correct
viewpoint will also produce fairly strong hypotheses at similar positions in its
neighboring viewpoints. Next, we only consider each candidate view separately.
We try to transfer evidence from each other view into that candidate view,
using the activation links. This procedure is called ’vote transfer’. Let C be
the candidate view and A another view. If an occurrence was activated in
A, and it has links to occurrences in C, these occurrences are activated and
cast votes in C. The position of the vote is the position in which the original
occurrence was activated, plus the linked occurrence’s vote coordinates. The
weight for a transferred vote is calculated in a similar statistical fashion as the
weights for regular votes. After vote transfer, we re-detect local maxima in the
voting spaces of each candidate view, and perform the MDL selection procedure
from [2]. This produces a set of final hypotheses. The confidence score for
each hypothesis is the MDL savings score. Because the final hypotheses often
overlap, we apply a simple overlap removal procedure, based on the bounding
boxes. A weaker hypothesis is rejected when its bounding box overlaps more
than a certain percentage with the one from a stronger hypothesis. We intend
to improve this procedure by using the same MDL approach as is currently used
in each view separately, but at the time of this writing the implementation is
not finished yet.

Classification results were simply derived from the detection results, by tak-
ing the maximum detection score for all hypotheses in the image.
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2.13 MIT Fergus

Participants: Rob Fergus
Affiliation: CSAIL, MIT

E-mail: fergus@csail.mit.edu

Method. Constellation Model based on CVPR ’05 paper.

Training. Due to time constaints, I did not train any models on the PASCAL
2006 training data. Instead, I used the models I applied to the PASCAL 2005
challenge (see my thesis for results on those datasets).

Motorbike model - The motorbike model was trained on the PASCAL 2005
training data. Various combinations of feature types were tried, but the Kadir
and Brady alone gave the best performance. A 6-part model, 30 detections per
image model was used. These are conservative settings but the small size of
many instances hindered the use of the large model. Increasing the number
of detections/image increased the false alarm rate significantly while giving a
modest reduction in the false negative rate due to the difficulty in finding small
instances.

Car model - The Car model was trained on the Caltech Cars Rear dataset.
Although a cars side model was also trained for use on the 2005 data, I didn’t
use it on the 2006 data since combining the models was fiddly and the side view
models was conserably weaker than the rear view model. The car rear model
has 6 parts with 3 using Kadir & Brady features and 3 using multiscale harris.
Again, 30 detections per image (of each type) were used for the same reasons
as above. The model seems to have learnt the shadow under the car, which
may explain why it also find instances in different viewpoints that which it was
trained on.

Validation. Both models were run once on the validation set, just to check I
hadn’t screwed something up with the feature extraction. No settings changes
were made.

Test. Both models were run once on the test data. Glancing at the results,
the motorbike model seems to get very confused by bicycles.

2.14 MIT Torralba

Participants: Antonio Torralba
Affiliation: CSAIL, MIT

E-mail: torralba@csail.mit.edu

We construct a view invariant car detector by training a set of classifiers each
tuned to one specific view point (we use 12 different viewpoints). The classifiers
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for each view points can share features with the others in order to increase ef-
ficiency and improving generalization. Features are based on convolution with
filtered image patches/fragments. For those image locations in which the detec-
tor is above the detection threshold, we can estimate the pose of the object by
looking at the classifier with the maximal response. The different aspect ratios
of the bounding boxes correspond to the hypothesized car orientations.

The classifier is trained on 12 views of cars from the LabelMe dataset (50
positive examples for each view and 12860 background samples) and uses 300
shared features. The classifier was trained for the 2005 PASCAL dataset and
has not been tuned or retrained since. We have just taken the same classifier and
applied it to the new dataset. Images are scaled, before running the detector,
to have a maximum size of 150 pixels in the vertical dimension. The bounding
box of the object has a vertical size of 24 pixels (for all viewpoints). Targets
smaller than that dimension (after image scaling) will not be detected. If there
are more than three detections in one image, only the three most confident are
retained.
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2.15 MUL

Participants: Martin Antenreiter
Affiliation: Montanuniversitat Leoben

E-mail: martin.antenreiter@unileoben.ac.at

It is not always clear which feature types are advisable for learning a certain
class, therefore we use 10 different types of features. We use the scale invariant
Harris-Laplace detector from K. Mikolajczyk and C. Schmid, a segmentation
algorithm from Pedro F. Felzenszwalb and Daniel P. Huttenlocher and another
segmentation algorithm from M. Fussenegger et al. to obtain regions of interest.
Our ten features are:

1. SIFT features from David Lowe

2. PCA-SIFT: SIFT features reduced to their 40 largest components using
PCA

3. Sub-sampled grayvalues

4. Sub-sampled grayvalues with region normalization

5. Basic moments

6. Basic moments with region normalization

7. Moment invariants
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8. Moment invariants with region normalization

9. Segments with color information and blob size.

10. Segments with textural moments ’Object Recognition Using Segmentation
for Feature Detection’.

To reduce computational efforts we cluster each feature type using a k-means
cluster algorithm. A boosting approach is used as learning method, due to the
fact, that boosting algorithms are able to select important features from a large
feature set.

Learning Method 1: One-vs-One. Method 1 learned 90 one-vs-one clas-
sifiers for the 10-class problem with LPBoost. The used weak learner selects
a reference feature with an optimal threshold. Finally, we address the multi-
class classification problem and provide a weight optimization method for the
one-vs-one classifiers using Support Vector Machines (SVMs).

Learning Method 2: One-vs-All. The method 2 learned ten one-vs-all
classifiers using a variant of the LPUBoost algorithm - Jure Leskovec and John
Shawe-Taylor: ’Linear Programming boost for Uneven Datasets’. The weak
learner of the boosting algorithm was the same as in method 1.

2.16 QMUL

Participants: Jianguo Zhang1, Cordelia Schmid2,
Svetlana Lazebnik3, Jean Ponce4,3

Affiliation: 1Queen Mary, University of London;
2INRIA Rhones-Alpes; 3University of Illinois;
4Ecole Normale Superieure, Paris

E-mail: jgzhang@dcs.qmul.ac.uk

Bag of Features and Spatial Pyramid. We start with our kernel-based bag
of visual features approach [6]. In this approach, object images are characterized
by orderless histograms of appearance-based descriptors (such as SIFT [5]) of
either sparse features computed at a set of keypoint locations, or dense features
computed at a set of points on a fixed image grid. We use χ2 distance to compare
the obtained histograms of bag of features. The approach of spatial pyramid
matching [4], is proposed to augment the basic bag-of-features representation
by adapting the pyramid matching scheme of Grauman and Darrell [3]. It is
worth noting that the spatial pyramid method is global, i.e., it represents spatial
information of features in a global coordinate system as opposed to an object-
centered coordinate system [2], and is thus not translationor scale-invariant.
This makes spatial pyramids more appropriate for scene as opposed to category
recognition. However, as the results in [4] show, it still works well for objects
even in the presence of clutter and geometric transformations. See [4] for details.
To compare the spatial histograms, one strategy is the pyramid matching kernel
used as in [3, 4]. Another strategy is presented in the following section.
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A Two-layer Spatial Pyramid SVM Classifier. We propose to modify the
approach of [4] in two ways. One major issue is that in [4], matching weights
between different levels of the pyramid are fixed based on the formulation of a
maximum-weight matching problem instead of being adaptively learned to yield
optimal classification performance. So here we argue that it may be useful to
learn the weights using a classifier, e.g. SVM, instead of having them fixed.
A second concern is that the image representation tested in [4] is dense, i.e.,
SIFT features on fixed dense grid, and good recognition performance is achieved
on datasets that lack heavy background clutter and large scale changes, e.g.,
CalTech101[1]. Performance on more challenging datasets with large viewpoint
changes or diverse poses is not fully demonstrated. To address this limitation,
we investigate how well the spatial pyramid works with sparse local features.
Intrinsically, the construction of the spatial pyramid matching can be explained
as a set of bag of features representations at each pyramid level combined with
different weights. Thus, it is straightforward to classify each pyramid level
separately, and then use a classifier to combine the outputs. Based on this idea,
we construct a two-layer SVM classifier. More specifically, we first learn a set
of SVM classifiers with the χ2 kernel based on the histograms of each level
in the pyramid. Next, the outputs of these SVM classifiers are concatenated
into a feature vector for each image and used to learn another SVM classifier
based on a Gaussian RBF kernel. Note that the bag of features representation
can be considered as the global histogram at the ground level in the spatial
pyramid. The spatial pyramid can be built either using sparse or dense features,
thus resulting in different methods. Note that the two-layer SVM classifier can
also be used to combine several bag-of-features image representations based on
different types of keypoints, e.g. Harris-Laplacian and Laplacian.

Discussion. In the challenge, we randomly select 50000 local descriptors from
the training images of each class. We then cluster these features with k-means
(k = 300) and concatenate the cluster centers of the 10 classes to build a global
vocabulary of 3000 words. Based on our experiments on the validation set, we
have observed that both basic bag-of-features and spatial pyramid image repre-
sentations achieve excellent results for object category classification. However,
using the spatial pyramid up to level 2 does not give much improvement upon
basic bag of features when the visual vocabulary is sufficiently rich. This may
due to the diversity of the pose and viewpoint of the objects presented in this
dataset. We can also see that the pyramid matching kernel might not be nec-
essary for comparing spatial pyramids. Using the proposed two-layer pyramid
SVM classifier can achieve similar or even better results. This might be because
the weights of each level in the pyramid are automatically learned by SVM in
the two-layer pyramid scheme, while in pyramid matching, they are fixed a pri-
ori. Based on these observations, we have presented two major methods for the
PASCAL06 challenge, (1) Spatial pyramid with a two-layer SVM classifier on
Laplacian points, denoted by LSPCH; (2) Bag of key points with Laplacian and
Harris-Laplacian combined by the two layer SVM strategy, denoted by HSLS.
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2.17 RWTH DiscHist

Participants: Thomas Deselaers
Affiliation: RWTH Aachen

E-mail: deselaers@informatik.rwth-aachen.de

The method for discriminative training of image patch histograms which has
been proposed in [1] consists of two steps: 1. feature extraction and 2. training
and classification. These steps are laid out in the following. Additionally, we
describe some extensions we used for our submission.

Feature Extraction. Given an image, we extract image patches around up
to 500 points of interest and 300 points from a regular grid. In contrast to
the interest points, the grid points can also fall onto very homogeneous areas
of the image. This property is important for capturing homogeneity in objects
in addition to points that are detected by interest point detectors, which are
usually of high variance. To the extracted image patches, a PCA dimensionality
reduction is applied, keeping 40 coefficients. These data are then clustered
using a Linde-Buzo-Gray algorithm. Then, we discard all information for each
patch except its corresponding closest cluster center identifier. For the test
data, this identifier is determined by evaluating the Mahalanobis distance to all
cluster centers for each patch. From these cluster center identifiers we create a
histogram representation for each image.

Classification. Having obtained this representation by histograms of image
patches, we need to define a decision rule for the classification of images. It was
shown that a method using discriminative training of log-linear models outper-
forms other methods. Discriminative training means to use the information of
competing classes during training. This is done by maximizing the posterior
probability instead of maximizing the class-conditional probability as is done in
maximum likelihood approaches.
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In initial experiments to tune all system parameters (e.g. number of his-
togram bins, feature extraction points, feature vectors) using the train and the
validation data, we found out that color is useful for the classes cat, cow, dog,
horse, and sheep. For the remaining tasks, the images were converted to gray
values.
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2.18 RWTH GMM

Participants: Thomas Deselaers
Affiliation: RWTH Aachen

E-mail: deselaers@informatik.rwth-aachen.de

The method uses Gaussian Mixture Models to recognize images represented
by patches. The method is described in [1,2].

Feature Extraction and Training. Given an image, we extract image
patches around interest points of various types. We use wavelet-based salient
points, difference-of-Gaussian interest points, and points taken from a regular
grid. For those points where no size is automatically extracted, patches are
extracted of various sizes.

Then, the patches are PCA transformed keeping 40 dimensions to reduce the
amount of data to be handled and a class-dependent Gaussian mixture model is
estimated for each class. These models are estimated using the EM algorithm
for Gaussian mixture models.

In a refinement step, the cluster weights can be trained discriminatively
which has been proven to lead to much better results. Unfortunately, for the
PASCAL VOC06 we were unable to use this refinement due to memory and
computing time limitations.

Classification. Given an image to be classified, the patches are extracted in
the same way as for the training images and Bayes’ decision rule is used to
classify the image.
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2.19 RWTH SparseHists

Participants: Thomas Deselaers
Affiliation: RWTH Aachen

E-mail: deselaers@informatik.rwth-aachen.de

The method uses sparse histograms of image patches that are extracted
from the images. It was proposed in [1,2]. The method consists of two steps: 1.
creation of sparse histograms of image patches. 2. classification.

Create of sparse histograms. In contrast to other methods this method
can cope with arbitrary large numbers of patches extracted from the images.
Thus we extract patches of four different sizes at each position in the images.
These patches are PCA reduced and inserted into the histogram.

Classification. The histograms are classified using a maximum entropy
trained log-linear model using Bayes’ decision rule.
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2.20 Siena

Participants: Gariele Manfardini, Vincenzo Di Massa
Affiliation: Universita degli Studi di Siena

E-mail: gabrimonfa@gmail.com

We have submitted results for the classification competition, using VOC
data for training, in all the 10 classes.

Each image was preprocessed in order to obtain a Region Adjacency Graph
(RAG) that represents it. A RAG is a graph where nodes denote homogeneous
regions of the image and edges stand for the adjacency relationships. Nodes and
edges are labeled. Node labels contain geometric features of the corresponding
regions (area, perimeter, orientation of the principal axes, and so on), while
edge labels encode the mutual orientation of the two regions and the difference
between their average colors. RAGs were obtained by the following steps:

1. The image was filtered using the Mean Shift algorithm.

2. A k-means color quantization procedure was performed to locate an initial
big number of homogeneous regions.
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3. Some adjacent regions were merged to achieve the desired number of final
regions. The procedure evaluated a dissimilarity function between all the
pairs of regions and merged those that achieve the lowest values, updat-
ing the list at each fusion. The dissimilarity function has been chosen
heuristically considering the distance between the average colors of the
two regions and their dimension.

Then the RAGs was processed by using a GNN (Graph Neural Network)
model. Graph Neural Networks have been recently proposed to process very
general types of graphs and can be considered an extension of RNNs (Recursive
Neural Networks). Actually, the main difference is that RNNs require input
graphs to be directed and acyclic, while cyclic or non-directed structures must
undergo a preprocessing phase. On the contrary GNNs can process directly very
general kind of graphs, cyclic, acyclic, directed, undirected, with labeled nodes
and edges, without any preprocessing. Given a graph G and one of its node n,
GNNs allow to approximate functions

φ : set(G) × N → Rm

where set(G) is the set of graphs G, N is the set of the nodes of the chosen graph
and R is the set of real numbers. In other words GNNs can evaluate an output
for one or more nodes of each graph G, i.e. is able to perform graph classifica-
tion/regression and node classification/regression. Some interesting results on
approximation capabilities of this neural network model had been proposed in
literature.
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works” World Conference on Computational Intelligence 2006 (WCCI’06)
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2.21 TKK

Participants: Ville Viitaniemi
Affiliation: Helsinki University of Technology

E-mail: Ville.Viitaniemi@tkk.fi
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In the PicSOM image analysis framework [1] a neural representation is sym-
metrically formed for both training and test set images. To this end, the images
are automatically segmented and a large number of statistical descriptors is
calculated for the segments as well as for the whole images. The set of de-
scriptors includes a subset of MPEG-7 visual descriptors, several non-standard
descriptors, and their combinations.

The descriptors are partitioned into feature spaces. Each of the feature
spaces is quantised with a Tree-Structured Self-Organising Map (TS-SOM). Be-
cause the quantisations preserve the topology of original feature spaces, we can
classify the reduced representations using standard vector space classification
methods. Within a feature space, a confidence value for a whole image is ob-
tained by summing the contributions of all its segments. Confidence values from
the different feature spaces are summed together to obtain the final confidence
value for each image.

The detection task is solved by classifying the automatically obtained image
segments within images using the PicSOM framework. This gives an approx-
imation of the conditional probability that tells which of the image segments
correspond to the target class if the image as a whole does. This probability is
further modulated with results from the image classification task. For additional
details, see reference [2].

References

[1] Jorma Laaksonen, Markus Koskela, and Erkki Oja. PicSOM – Self-
Organizing Image Retrieval With MPEG-7 Content Descriptors. IEEE
Transactions on Neural Networks, 13(4): 841–853, July 2002

[2] Ville Viitaniemi and Jorma Laaksonen. Techniques for Still Image Scene
Classification and Object Detection. In Proceedings of 16th International
Conference on Artificial Neural Networks (ICANN 2006), 2006 (to appear)

2.22 TUD

Participants: Nikodem Majer, Mario Fritz, Edgar Seemann,
Gyuri Dorkó, Bastian Leibe, Bernt Schiele

Affiliation: TU Darmstadt
E-mail: fritz@mis.tu-darmstadt.de

For object localization (competition #3), we have submitted results on the
categories motorbikes and people. Our method is based on the Implicit Shape
Model (ISM) [4]. Since the method is similar to the one presented on the
PASCAL Visual Object Challenge 2005—that time including a discriminative
extension [3]—our submission this year can be seen as a baseline experiment
with the ISM. However, we have made some modification to adapt the model to
the new challenge. First, the requirement of pixel-level segmentation is relaxed
to bounding box annotation, and second discriminative codebook selection is
used to improve runtime performance. In the followings, we briefly outline the
ISM and describe our parameters used in the experiments.
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Method description. The ISM approach first builds a codebook of local
appearance-based descriptors using an agglomerative clustering scheme. The
object category is modeled by a set of non-parametric spatial distribution of fea-
ture occurrences learned for each codebook entry, relatively to the object center.
For detection, extracted local features are first matched to the codebook, then
based on the matched entries, object hypotheses are computed using a voting
scheme. At the second stage, the original ISM [4] uses pixel-wise segmentation
to increase the performance. Since the challenge datasets do not contain this
information, we have substituted the segmentation masks with rectangular an-
notations based on the provided bounding boxes. We note, that this is the first
time, when ISM is used without the pixel-based segmentations. Discriminative
feature selection based on the likelihood ratio [2] is used to significantly reduce
the size of the codebook, which leads to substantial speed-up for the detection.
For a more detailed description of the original ISM—in particular how to achieve
scale-invariance—we refer to [5]. We would like to note that in contrast to [7]
our results are corresponding to the performance of the original ISM which was
not designed to learn objects from a different viewpoints.

Preprocessing. The provided bounding box information was used to rescale
the training object to have a constant height of 160 pixel for the motorbikes
and 200 pixels for the people. Additionally we selected 220 most representative
training examples for the category people.

Parameters. For appearance representation we used the scale-invariant
Hessian-Laplace [6] detector, with shape context descriptors [1, 6]. Due to
the feature selection the size of the codebook is reduced from 3968 to 80, and
5963 to 204, for motorbikes and people respectively.
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2.23 UVA big5

Participants: Jan van Gemert, Arjan Gijsenij
Affiliation: University of Amsterdam

E-mail: jvgemert@science.uva.nl

This method combines several detectors and descriptors. The output of
each descriptor on the train+val set is clustered with a radius-based clustering
algorithm. These clusters are subsequently used to characterize an image in the
whole set.

The detectors consist of

• An overlapping 2D grid

• Maximally Stable Extremal Regions (mser)

• Harris Laplacian

• Hessian Affine

The descriptors consist of:

• Color Invariant Weibull Features as developed by the UvA.

• Sift

• Spin

• Gloh

• Shape Context

Based on cross validation performance on the train+val set, we chose the
best representative for each descriptor. The best results were given by these
five: mser.spin + grid.weibull + mser.shapeCtx + harlap.sift + hesaff.gloh

The image characterizations based on the clusters were used to train a non-
linear classifier on the test+val set, which was used to predict scores on the test
set.

2.24 UVA weibull

Participants: Jan van Gemert, Arjan Gijsenij
Affiliation: University of Amsterdam

E-mail: jvgemert@science.uva.nl
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This method utilizes a novel descriptor developed at the University of Ams-
terdam. A 2D overlapping grid is placed over an image. For each region in this
grid, a Weibull distribution is fitted over the edge responses of the region. The
beta and gamma parameters of the Weibull distribution are used as a descrip-
tor. The Weibulls are computed on each color channel, and makes use of color
invariance to cope with different lighting conditions.

The similarity of the regions in an image are aggregated with typical Weibull
parameters of 15 proto-concepts like vegetation, water, fire, sky etc. These
similarities are subsequently used to characterize an image.

The image characterizations were used to train a non-linear classifier on the
test+val set, which was used to predict scores on the test set.

2.25 XRCE

Participants: Florent Perronnin
Affiliation: Xerox Research Centre Europe

E-mail: Florent.Perronnin@xrce.xerox.com

The Xerox generic visual categorizer (GVC) is based on a novel and practical
approach described in the following paper: ”Adapted vocabularies for generic vi-
sual categorization” by Florent Perronnin, Christopher Dance, Gabriela Csurka
and Marco Bressan, to appear in the proceedings of ECCV 2006. This approach
extends the traditional bag of visual words. It is based on a universal vocab-
ulary, which describes the content of all the considered classes of images, and
class vocabularies obtained through the adaptation of the universal vocabulary
using class-specific data. An image is characterized by a set of histograms, one
per class, where each histogram describes whether the image content is best
modeled by the universal vocabulary or the corresponding class vocabulary.
Our local low-level features contain gradient orientation and color information.
They are extracted on regular grids at multiple scales. For the classification of
the bi-partite histograms, one linear classifier per class is trained in a one-vs-all
manner using sparse logistic regression. Running our unoptimized code on a
modern PC, the categorization of one image, which includes low level feature
extraction, histogram computation and histogram classification, takes less than
700 ms. Note that we used the default parameters of our categorizer and did
not tune the system specifically for the challenge.

2.26 ROUND2 INRIA Moosmann

Participants: Frank Moosmann
Affiliation: INRIA Rhone-Alpes

E-mail: frank.moosmann@inrialpes.fr

The method used follows the method described in [1]. First random subwin-
dows are extracted from the training images (random size, random position).
Each window is then described by the SIFT-Descriptor, concatenated with color
information in HSL color space. Extremely randomized trees are then used to
cluster the labeled training features in a supervised way. The leaf nodes form

30



the visual vocabulary. A linear SVM is afterwards trained with binarized his-
tograms, created from the training images. The extraction of features is done
as before (but on the whole image) and the PDF responsible for the selection of
the random windows is adjusted after each selection and propagation through
the trees depending on the output of the trees. This leads to more features to
be extracted in regions where the object is estimated. To build the trees 50000
features were extracted in total. To create histograms 10000 features per image
were used.

References

[1] F.Moosmann, D.Larlus and F.Jurie, Learning Saliency Maps for Object
Categorization, ECCV International Workshop on The Representation
and Use of Prior Knowledge in Vision, 2006

3 Results: Classification

The following sections present the results for the classification competitions. For
each competition, the area under ROC curve (AUC) is reported by participant
and class. The ‘best’ result, as measured by AUC, is underlined; where several
methods obtained the same AUC to three decimal places, all are underlined.

In the figures of ROC curves, the curves have been sorted by decreasing
AUC to aid visibility of the most successful entries. Two sets of ROC curves are
shown: (i) all submitted results; (ii) the top 5 results submitted, as measured
by AUC.

3.1 Competition 1

• Train on trainval data provided, classify object present/absent.

There were 20 submissions for this competition. All but two tackled all ten
object classes. In the second round of the challenge, three participants submitted
additional results, listed at the bottom of table 2. For the second round, ground
truth annotation was not available for the test data, but participants did have
additional time, so the results should not be directly compared to the others.
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Figure 1: Competition 1.1: bicycle (all entries)
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Figure 2: Competition 1.1: bicycle (top 5 by AUC)
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Figure 3: Competition 1.2: bus (all entries)
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Figure 4: Competition 1.2: bus (top 5 by AUC)
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Figure 5: Competition 1.3: car (all entries)
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Figure 6: Competition 1.3: car (top 5 by AUC)
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Figure 7: Competition 1.4: cat (all entries)
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Figure 8: Competition 1.4: cat (top 5 by AUC)
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Figure 9: Competition 1.5: cow (all entries)

0 0.05 0.1 0.15 0.2 0.25 0.3
0.7

0.75

0.8

0.85

0.9

0.95

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

XRCE (0.940) 
INRIA_Marszalek (0.938) 
QMUL_LSPCH (0.938) 
QMUL_HSLS (0.936) 
ROUND2_INRIA_Moosmann (0.925) 
RWTH_DiscHist (0.910) 

Figure 10: Competition 1.5: cow (top 5 by AUC)
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Figure 11: Competition 1.6: dog (all entries)
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Figure 12: Competition 1.6: dog (top 5 by AUC)

38



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

QMUL_LSPCH (0.926) 
XRCE (0.925) 
QMUL_HSLS (0.922) 
INRIA_Marszalek (0.908) 
INRIA_Nowak (0.904) 
ROUND2_INRIA_Moosmann (0.877) 
ROUND2_TKK (0.856) 
RWTH_DiscHist (0.854) 
INRIA_Larlus (0.850) 
RWTH_SparseHists (0.844) 
INRIA_Moosmann (0.824) 
TKK (0.806) 
UVA_big5 (0.806) 
RWTH_GMM (0.802) 
UVA_weibull (0.759) 
Cambridge (0.754) 
MUL_1v1 (0.733) 
AP06_Lee (0.694) 
Siena (0.644) 
AP06_Batra (0.607) 
MUL_1vALL (0.525) 

Figure 13: Competition 1.7: horse (all entries)
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Figure 14: Competition 1.7: horse (top 5 by AUC)
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Figure 15: Competition 1.8: motorbike (all entries)
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Figure 16: Competition 1.8: motorbike (top 5 by AUC)
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Figure 17: Competition 1.9: person (all entries)
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Figure 18: Competition 1.9: person (top 5 by AUC)
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Figure 19: Competition 1.10: sheep (all entries)
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Figure 20: Competition 1.10: sheep (top 5 by AUC)
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3.2 Competition 2

• Train on any (non-test) data, classify object present/absent.

Three submissions were received for this competition, in which participants
were to submit results of classifiers trained on their own data. KUL submitted
results for ‘motorbike’ alone, MIT Torralba for ‘car’, and MIT Fergus for ‘car‘
and ‘motorbike’.
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Figure 21: Competition 2.3: car (all entries)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

MIT_Fergus (0.821) 
KUL (0.797) 

Figure 22: Competition 2.8: motorbike (all entries)
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4 Results: Detection

The following sections present the results for the detection competitions. For
each competition, the ‘average precision’ (AP) is reported by participant and
class. Since the average precision is computed across the full range of recall
it penalizes methods which have either overall low precision, or fail to achieve
high recall. The ‘best’ result, as measured by AP, is underlined; where several
methods obtained the same AP to three decimal places, all are underlined.

4.1 Competition 3

• Train on trainval data provided, detect object bounding boxes.

There were five submissions for this competition. Two participants, Cam-
bridge and TKK, submitted results for all ten classes. The other three partici-
pants submitted results for different subsets of the classes.
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Figure 23: Competition 3.1: bicycle (all entries)
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Figure 24: Competition 3.2: bus (all entries)
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Figure 25: Competition 3.3: car (all entries)
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Figure 26: Competition 3.4: cat (all entries)
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Figure 27: Competition 3.5: cow (all entries)
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Figure 28: Competition 3.6: dog (all entries)
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Figure 29: Competition 3.7: horse (all entries)
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Figure 30: Competition 3.8: motorbike (all entries)
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Figure 31: Competition 3.9: person (all entries)
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Figure 32: Competition 3.10: sheep (all entries)
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4.2 Competition 4

• Train on any (non-test) data, detect object bounding boxes.

Four submissions were received for this competition, in which participants
were to submit results of detectors trained on their own data. There were
two submissions for ‘car’ (MIT Fergus and MIT Torralba), two for ‘motorbike’
(KUL and MIT Fergus), and one for ‘person’ (INRIA Douze).
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Figure 33: Competition 4.4: car (all entries)
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Figure 34: Competition 4.8: motorbike (all entries)

55



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

INRIA_Douze (0.162) 

Figure 35: Competition 4.9: person (all entries)
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A Annotation Guidelines

This appendix lists the guidelines on annotation which were given to annotators.

A.1 Guidelines on what and how to label

What to label. All objects of the defined categories, unless:

• you are unsure what the object is.

• the object is very small (at your discretion).

• less than 10-20% of the object is visible.

If this is not possible because of too many objects, mark the image as bad.
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Viewpoint. Record the viewpoint of the ’bulk’ of the object e.g. the body
rather than the head. Allow viewpoints within 10-20 degrees. If ambiguous,
leave as ’Unspecified’.

Bounding box. Mark the bounding box of the visible area of the object (not
the estimated total extent of the object). The bounding box should contain all
visible pixels, except where the bounding box would have to be made excessively
large to include a few additional pixels (< 5%) e.g. a car aerial.

Occlusion/truncation. If more than 15-20% of the object is occluded and
lies outside the bounding box, mark as ‘Truncated’. Do not mark as truncated
if the occluded area lies within the bounding box.

Image quality/illumination. Images which are poor quality (e.g. excessive
motion blur) should be marked bad. However, poor illumination (e.g. objects in
silhouette) should not count as poor quality unless objects cannot be recognized.

Clothing/mud/snow etc. If an object is ‘occluded’ by a close-fitting oc-
cluder e.g. clothing, mud, snow etc., then the occluder should be treated as
part of the object.

Transparency. Do label objects visible through glass, but treat reflections on
the glass as occlusion.

Mirrors. Do label objects in mirrors.

Pictures. Label objects in pictures/posters/signs only if they are photoreal-
istic but not if cartoons, symbols etc.

A.2 Guidelines on categorization

Car. Includes cars, vans, people carriers etc. Do not label where only the
vehicle interior is shown.

A.3 “Difficult” flag

Objects were marked as “difficult” by a single annotator. Only the image area
corresponding to the bounding box of each object was displayed and a subjective
judgement of the difficulty of recognizing the object was made. Reasons for
marking an object as difficult included small image area, blur, clutter, high
level of occlusion, occlusion of a very characteristic part of the object, etc.

57


