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Fig. 8. Snapshots of activities in SYSU 3D HOI set, one sample per class. The rows headed with RGB show the samples in RGB channel and the
rows underneath headed with Depth show the corresponding depth channel superimposed with skeleton data. Best viewed in color.
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Fig. 10. Effects of parameter M on the system performance.

TABLE 6
Accuracy (%) of our methods with and without TPF on gradient. s-1
denotes setting-1 and s-2 for setting-2 applied on the SYSU 3D HOI

dataset.

MSRD CAD60 Comp. Act. 3DHOI(s-1) 3DHOI(s-2)
With 95 84.1 94.24 79.63 84.89

Without gradient 91.25 76.5 92.22 78.83 83.63

(velocity) information. Table 6 shows the results of our model
with and without temporal Fourier features computed from the
gradient signal on all of the three datasets. It can be seen that,
while the improvement on the SYSU 3D HOI dataset is relatively
mild, TPF features on gradient consistently improve the results
in all of the cases, with the biggest gain (7.6%) achieved on the
CAD60 dataset. This indicates that the proposed extension of TPF
features to the gradient signal is promising and effective.

Effect of α and β. As discussed in previous sections, the parame-
ters α and β were employed to control the generalization ability of
our joint learning model. Here, we investigate their influence on
Composable Activities dataset and SYSU with setting-2, where
cross-subject settings (i.e., half of the subjects for training, and
the rest for testing) are employed. In this test, parameters α and

Fig. 11. Effects of parameters α (the vertical) and β (the horizontal) on
the system performance (%) on the cross-subject settings of Compos-
able Activities Dataset and SYSU set.

β were both selected from {0, 10�2 , 10�1 , 100, 101, 102}, and
therefore we have a total of 36 different parameter settings. We
present the recognition results in Fig. 11. It could be observed that,
generally large α and β (≥ 10) lead to an inferior performance.
This is because the larger the α and β are, the less the shared
and specific components are discovered for recognition. However,
when α and β are smaller than 1, the performance would remain
relatively stable in most cases, which demonstrates that our
method is insensitive to the parameters in a reasonable range.
This study also reveals that the optimal ranges of α and β are
approximately the same, which indicates that we can simply set
α = β (e.g., both were set as 0.1 in all of the other experiments)
to reduce the number of parameters without affecting the system
performance too much.

Influence of λ. In our joint learning framework, we introduce a
parameter λ to explicitly control the trade-off between the shared
structure W 0 and feature-specific structures {W i }i=1 ;2;:::;S .
Here, we evaluate its influence by setting λ as 0, 0.25, 0.5, 0.75,
and 1, respectively, and then report the achieved performances in
Table 7. As expected, a proper combination of the shared and
specific structures gives a better result; generally too small or
too large λ would result in an inferior performance. Especially,
without modeling the specific structures (λ = 1) or shared
structure (λ = 0), the performance decreased in both cases.
Overall, albeit not always the best, on all of the four datasets
considered, λ = 0.5 is an acceptable setting.
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TABLE 7
Effects of parameter λ on recognition (%).

Dataset λ = 0λ = 0.25λ = 0.5λ = 0.75λ = 1

MSRD 90.62 91.87 95 92.5 91.25
CAD60 82.58 83.33 84.1 85.61 82.58

Comp. Act. 91.21 93.80 94.24 93.37 91.50
SYSU(s-1) 78.83 80.24 79.63 79.50 78.89
SYSU(s-2) 83.81 84.65 84.89 85.15 84.58

Average 85.41 86.78 87.57 87.23 85.76

TABLE 8
Effects of parameter γ on recognition accuracy (%).

Dataset γ = 0 γ = 0.01 γ = 1 γ = 100 γ = 10000

MSRD 90.6 91.5 95 93.8 90
CAD60 79.6 81.1 84.1 78.0 76.5

Comp. Act. 91.4 93.4 94.2 93. 7 92.80
SYSU(s-1) 77.0 80.0 79.6 76.8 76.9
SYSU(s-2) 81.6 83.0 84.9 84.1 82.9

Influence of γ. In the JOULE model (Formula 1), we employed
a reconstruction loss term (parametered by γ) to regularize the
i-transforms learning in order to preserve as much information
as possible. Here, we investigate its influence by varying it
systemically. The results are presented in Table 8. As shown, the
model performed the best when γ = 1 on most of the datasets.
In general, a smaller or larger γ would lead to lower recognition
accuracies. In particular, when γ is zero and the reconstruction
term is not used to constrain the i-transforms learning, lower
recognition results were observed.

Single vs. Multi Channels. In the JOULE model, we have
integrated the learning of features from different channels (RGB,
depth (DEP) and skeleton (SKL)) in a framework so that the learn-
ing of one channel can facilitate the learning of other channels. To
investigate the benefits of joint learning, we tested the JOULE by
feeding it with 1) features from one channel only and 2) features
from two or more channels, respectively. Therefore, we tested
7 cases for each dataset. In total we conducted 35 experiments,
and results are summarized in Table 9. It can be seen that the
performances of learning features from two channels are higher
than each of them alone. Using features from three channels
always outperform one or two channels. This demonstrates that
jointly learning the features from different channels is beneficial.

6.7 Experiments on Transfer-JOULE
In this section, we tested the performance of Transfer-JOULE
(Formula (8)) and show how the auxiliary set can benefit our

TABLE 9
Effects of jointly learning in different channels. s-1 denotes setting-1

and s-2 for setting-2 applied on the SYSU 3D HOI dataset (%).

Data Channel MSRD CAD60 Comp. Act. SYSU(s-1) SYSU(s-2)
RGB 86.9 78.0 88.9 71.6 80.0
DEP 84.4 79.6 88.3 74.3 82.3
SKL 75 77.9 91.2 75.5 76.9

DEP+RGB 87.5 80.3 90.1 74.8 82.6
RGB+SKL 91.3 81.1 93.2 76.9 81.4
DEP+SKL 90.6 82.6 93.2 79.7 83.5

DEP+RGB+SKL 95 84.1 94.2 80.2 84.9

TABLE 10
Comparison of Transfer-JOULE and JOULE, and the effects of ρ,

where → indicates the direction of transfer (%).

Dataset JOULE Transfer-JOULE ExTrain
ρ = 1 ρ = 0.8 ρ = 0.6 ρ = 0.4 ρ = 0

SYSU → Comp. 94.24 95.10 94.81 92.80 92.07 91.93
Comp. → SYSU(s-1) 79.63 80.10 80.71 79.54 78.58 77.19
Comp. → SYSU(s-2) 84.89 84.92 85.15 84.51 81.14 81.11

heterogeneous features learning on the target set. The experiments
were carried out on the SYSU 3DHOI and Composable Activities
sets as they are the two largest datasets among those considered.

Firstly, we evaluated the effect of the control parameter ρ
by varying its value from 0 to 1. In this evaluation, one of the
two datasets is considered as a target set, and the other as the
auxiliary set. When SYSU 3DHOI was used as the target set,
we followed two different settings (setting-1 and setting-2) as in
Section 6.5. When Composable Activities dataset was used as
the target set, we followed the leave-one-subject-out setting as
described in 6.4. Thus in total, we have three different test cases: 1)
SYSU 3DHOI → Composable Activities dataset; 2) Composable
Activities dataset → SYSU 3DHOI (setting-1); 3 Composable
Activities dataset → SYSU 3DHOI (setting-2), where → indicates
the direction of transfer, i.e. auxiliary set → target set. In each
case, we employed the same evaluation protocol as that in section
6 by reporting the average accuracy over a number of different
training/test splits (i.e., 14 in Composable Activities dataset and
30 in SYSU 3DHOI set) on the target set. To illustrate the
effectiveness of the proposed transfer learning framework, we also
implemented a baseline that directly trains a JOULE (Formula 3)
model on the pooled dataset that contains both the training set
(from the target set) and the entire auxiliary set. This is a naive
case denoted as “ExTrain”.

The results are summarized in Table 10. As shown, a proper
combination (ρ ≥ 0.6) of the feature learning in target set and
auxiliary set usually improves the recognition accuracy compared
to the performance of using target training set only (ρ = 1).
The performance decreases when ρ is getting smaller. In general,
setting ρ = 0.6 produces the best overall performance. It is
observed that the direct use of i-transforms learned on auxiliary
set (ρ = 0) can also result in a good performance on the target set,
which indicates that the i-transforms could generalize well from
one to the other. The superior performance of “Transfer-JOULE”
over “ExTrain” shows the better capability of Transfer-JOULE in
transferring information gained in auxiliary set to target set. Note
that the Transfer-JOULE always performs better than the (non-
transfer) JOULE trained on the pooled dataset. This suggests that
simply merging the auxiliary and target datasets together is not an
optimal way to exploit the transferrable shared-specific structures.

Finally, we investigate the influence of the number of the
training samples in the target set. Here, we compare the perfor-
mances of our JOULE model with and without transfer learning
(i.e. Transfer-JOULE (8) and JOULE (1)). As suggested in the
last experiment, the parameter ρ for Transfer-JOULE is set as
0.6. The methods are evaluated when the SYSU-3DHOI set is
used as the target set under two different settings (setting-A and
setting-B). In setting-A, we randomly selected a certain number of
samples per class to train the model and used the rest for testing. In
setting-B, we randomly selected a certain number of participants
and used all the samples performed by them as the training set.
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Fig. 12. Effects of the number of training samples per class (left - setting-
A), and the number of subjects (right - setting-B) when the SYSU set is
used as the target set.

For a fixed number of training samples (or participants) in each
setting, we report the average accuracy obtained by 30 trials. The
Composable Activities dataset is used as the auxiliary set in both
settings. The results are presented in Figure 12. It is observed
that in all of the cases tested, with the help of auxiliary set, the
performance of our Transfer-JOULE model is consistently higher
than that of JOULE. When the number of training samples is
smaller (e.g., less than 15), the performance gap gets much larger.
The performance gain of using the auxiliary set becomes smaller
but clearly noticeable when the number of training samples gets
larger, which is as expected. In particular, in the case of one-
shot activity recognition where only one target training sample
per class is available for the model training, our Transfer-JOULE
model can obtain accuracies of 39.17% and 43.04% in the setting-
A and setting-B, respectively, which are about 13% higher than
the (non-transferred) JOULE model. This clearly demonstrates
that with the help of an auxiliary set, our Transfer-JOULE model
can learn a set of parameters with better generalization than the
(non-transferred) JOULE model.

7 CONCLUSION

We have proposed a new RGB-D method called joint heterogenous
features learning (JOULE) model to jointly learn heterogeneous
features with different number of dimensions for RGB-D activity
recognition. A transfer version is also introduced to further facil-
itate the joint learning on target set via exploiting shared inter-
mediate transforms (i-transforms) from non-target data. Extensive
results are reported on four RGB-D activity sets, demonstrating
the effectiveness of the proposed methods. A limitation of our
method is the assumption that all the considered activities should
be fully executed and observed by the system, which makes
it less applicable for identifying ongoing activities containing
partial activity execution. In the future, we would like to extend
the JOULE model so that it can be used for real-time activity
recognition or prediction.
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[24] M. Müller and T. Röder. Motion templates for automatic classification
and retrieval of motion capture data. In ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 137–146, 2006.

[25] B. Ni, P. Moulin, and S. Yan. Order-preserving sparse coding for
sequence classification. In Europeon Conference on Computer Vision,
pages 173–187. 2012.

[26] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. Sequence
of the most informative joints (smij): A new representation for human
skeletal action recognition. Journal of Visual Communication and Image



0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2640292, IEEE
Transactions on Pattern Analysis and Machine Intelligence

SUBMISSION TO IEEE TRANS. ON PAMI 14

Representation, 25(1):24–38, 2014.
[27] O. Oreifej and Z. Liu. Hon4d: Histogram of oriented 4d normals

for activity recognition from depth sequences. In IEEE International
Conference on Computer Vision and Pattern Recognition, pages 716–
723, 2013.

[28] A. Shahroudy, G. Wang, and T.-T. Ng. Multi-modal feature fusion for
action recognition in rgb-d sequences. In International Symposium on
Control, Communications, and Signal Processing, pages 1–4, May 2014.

[29] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,
M. Cook, and R. Moore. Real-time human pose recognition in parts from
single depth images. Communications of the ACM, 56(1):116–124, 2013.

[30] Y. Song, L.-P. Morency, and R. Davis. Multi-view latent variable
discriminative models for action recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2120–2127,
2012.

[31] J. Sung, C. Ponce, B. Selman, and A. Saxena. Human activity detection
from rgbd images. AAAI Workshop Plan, Activity, and Intent Recognition,
pages 47–55, 2011.

[32] R. Vemulapalli, F. Arrate, and R. Chellappa. Human action recognition
by representing 3d skeletons as points in a lie group. In IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, pages
588–595, 2013.

[33] A. Wang, J. Cai, J. Lu, and T.-J. Cham. Mmss: Multi-modal sharable
and specific feature learning for rgb-d object recognition. In IEEE
International Conference on Computer Vision, pages 1125–1133, 2015.

[34] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Action recognition by
dense trajectories. In IEEE International Conference on Computer Vision
and Pattern Recognition, pages 3169–3176, 2011.

[35] H. Wang, C. Yuan, W. Hu, and C. Sun. Supervised class-specific
dictionary learning for sparse modeling in action recognition. Pattern
Recognition, 45(11):3902–3911, 2012.

[36] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu. Robust 3d action
recognition with random occupancy patterns. In Europeon Conference
on Computer Vision, pages 872–885. 2012.

[37] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Learning actionlet ensemble for 3d
human action recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(5):914–927, 2014.

[38] S. Wang, Y. Yang, Z. Ma, X. Li, C. Pang, and A. G. Hauptmann. Action
recognition by exploring data distribution and feature correlation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1370–1377, 2012.

[39] P. Wei, Y. Zhao, N. Zheng, and S.-C. Zhu. Modeling 4d human-object
interactions for event and object recognition. In IEEE International
Conference on Computer Vision, pages 3272–3279, 2013.

[40] Z. Wen and W. Yin. A feasible method for optimization with orthogonal-
ity constraints. Mathematical Programming, 142(1-2):397–434, 2013.

[41] L. Xia and J. Aggarwal. Spatio-temporal depth cuboid similarity feature
for activity recognition using depth camera. In IEEE International
Conference on Computer Vision and Pattern Recognition, pages 2834–
2841, 2013.

[42] L. Xia, C.-C. Chen, and J. Aggarwal. View invariant human action recog-
nition using histograms of 3d joints. In IEEE International Conference
on Computer Vision and Pattern Recognition Workshops, pages 20–27,
2012.

[43] Y. Yan, E. Ricci, R. Subramanian, G. Liu, and N. Sebe. Multitask
linear discriminant analysis for view invariant action recognition. IEEE
Transactions on Image Processing, 23(12):5599–5611, 2014.

[44] X. Yang, S. Kim, and E. P. Xing. Heterogeneous multitask learning with
joint sparsity constraints. In Advances in Neural Information Processing
Systems, pages 2151–2159, 2009.

[45] X. Yang and Y. Tian. Eigenjoints-based action recognition using naive-
bayes-nearest-neighbor. In IEEE International Conference on Computer
Vision and Pattern Recognition Workshops, pages 14–19, 2012.

[46] X. Yang and Y. Tian. Super normal vector for activity recognition using
depth sequences. In IEEE International Conference on Computer Vision
and Pattern Recognition, pages 804–811, 2014.

[47] B. Yao and L. Fei-Fei. Action recognition with exemplar based 2.5d
graph matching. In Europeon Conference on Computer Vision, pages
173–186, 2012.

[48] B. Yao and L. Fei-Fei. Recognizing human-object interactions in still im-
ages by modeling the mutual context of objects and human poses. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(9):1691–
1703, 2012.

[49] M. Yu, L. Liu, and L. Shao. Structure-preserving binary representations
for rgb-d action recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2016.

[50] M. Zanfir, M. Leordeanu, and C. Sminchisescu. The moving pose: An
efficient 3d kinematics descriptor for low-latency action recognition and
detection. In IEEE International Conference on Computer Vision, pages
2752–2759, 2013.

[51] Y. Zhang and D.-Y. Yeung. A convex formulation for learning task rela-
tionships in multi-task learning. In Proceedings of the 26th Conference
on Uncertainty in Artificial Intelligence (UAI), pages 733–742, 2010.

[52] Y. Zhang and D.-Y. Yeung. Multi-task learning in heterogeneous feature
spaces. In AAAI Conference on Artificial Intelligence, pages 574–579,
2011.

[53] Y. Zhao, Z. Liu, L. Yang, and H. Cheng. Combing rgb and depth map
features for human activity recognition. In IEEE Asia-Pacific Signal
& Information Processing Association Annual Summit and Conference
(APSIPA ASC), pages 1–4, 2012.

[54] Q. Zhou, G. Wang, K. Jia, and Q. Zhao. Learning to share latent tasks for
action recognition. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2264–2271, 2013.

[55] Y. Zhu, W. Chen, and G. Guo. Fusing spatiotemporal features and joints
for 3d action recognition. In IEEE International Conference on Computer
Vision and Pattern Recognition Workshops, pages 486–491, 2013.

[56] Y. Zhu, W. Chen, and G. Guo. Evaluating spatiotemporal interest
point features for depth-based action recognition. Image and Vision
Computing, 32(8):453–464, 2014.

Jian-Fang Hu received the B.S. degree from
the School of Mathematics and Computational
Science, Sun Yat-Sen University, Guangzhou,
China, in 2010 and 2012, respectively, and he
is currently pursuing the Ph.D. degree with the
Department of Applied Mathematics. His current
research interests include human-object interac-
tion modeling, 3D face modeling, and RGB-D
activity recognition.

Wei-Shi Zheng received the PhD degree in ap-
plied mathematics from Sun Yat-Sen University
in 2008. He is a professor in Sun Yat-sen Univer-
sity. He has been a postdoctoral researcher on
the EU FP7 SAMURAI Project at Queen Mary
University of London. His research interests in-
clude person/object association and recognition
in visual surveillance. He is a recipient of excel-
lent young scientists fund of the national natu-
ral science foundation of China. He has joined
Microsoft Research Asia Young Faculty Visiting

Programme.

Jian-Huang Lai received the Ph.D. in mathe-
matics from Sun Yat-Sen University in 1999. He
is a Professor and the Dean of the School of
Information Science and Technology. His current
research interests are in the areas of digital im-
age processing, pattern recognition, multimedi-
a communication, wavelet, and its applications.
He has published over 100 scientific papers in
international journals and conferences including
IEEE TPAMI, IEEE TNN, IEEE TIP, IEEE TSMC-
B, PR, ICCV, CVPR, and ICDM.

Jianguo Zhang is currently a Reader at Com-
puting in the School of Science and Engineering,
University of Dundee, UK. He received a PhD
in National Lab of Pattern Recognition, Institute
of Automation, Chinese Academy of Sciences,
Beijing, China, 2002. His research interests in-
clude visual surveillance, object recognition, im-
age processing, medical image analysis and ma-
chine learning.


