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Abstract

We advocate increased flexibility in automated
reasoning, whereby a reasoning agent is able to
correct the statement of a given faulty conjec-
ture in order to prove that the modified the-
orem is true. Such alterations are common in
mathematics. In particular, in his book ‘Proofs
and Refutations’, Imre Lakatos prescribes var-
ious techniques for the modification of a faulty
conjecture within a social setting (a hypothe-
sised mathematics class). This has inspired a
multi-agent approach to automating Lakatos-
style techniques, and we give details of the
implementation of these methods within (and
on top of) the HR automated theory forma-
tion system. We report on the progress of this
project and supply illustrative results from ses-
sions using the enhanced system.

1 Introduction

Because of the polished nature of results presented in
textbooks, it could be perceived that mathematics pro-
ceeds via the proposition of a perfectly formed theorem
statement followed by an equally perfect proof of the
truth of the statement. However, this is a mistake: it
is more common that a sketch conjecture is outlined
and while a proof for the result is sought, the conjec-
ture statement evolves into a result which can actually
be proved. Following this will be a rationalisation of the
theory surrounding the result, whereby concept defini-
tions are stated externally and lemmas are extracted in
order to make the theorem statement and proof of it as
comprehensible (and beautiful) as possible.

After abortive attempts to settle an open conjecture,
a human mathematician has (at least) two further op-
tions: to prove that a conjecture is independent of the
axioms, i.e., cannot be proven or disproven, or to modify
it to something that can be proved. The latter option
can also be taken if a counterexample has been discov-
ered which proves the conjecture false, and yet the result
still appears to be interesting and worth pursuing (mod-
ifying). Well known examples where the first option was
taken include:

® The continuum hypothesis — there is no number which
is larger than the size of the set of natural numbers and
less than the size of the set of real numbers.

® The axiom of choice —if S is a set of disjoint non-empty
sets then there exists at least one set which contains a
single member from each member of S.

® The parallel postulate — suppose a straight line falling
on two straight lines makes the interior angles on the
same side less than two right angles. Then the two
straight lines, if produced indefinitely, will meet on the
side where the angles are less than the two right angles.

Well known examples where the second option was taken
include:

® Fuler’s conjecture — for all polyhedra, the number of
vertices (V) minus the number of edges (E) plus the
number of faces (F) is 2, which was modified to vari-
ous conjectures, including: for all convex polyhedra, V-
E+F=2; for all simply-connected polyhedra with simply-
connected faces, V-E+F=2; and for all polyhedra whose
circuits bound, V-E4+F=2 [12].

® The principle of continuity — the limit of any conver-
gent series of continuous functions is itself continuous,
which was modified to: a uniformly convergent series of
continuous functions has a continuous limit [12].

® The conjecture that all even perfect numbers end al-
ternately in 6 or 8, which was modified to all even perfect
numbers end in either 6 or 8 [2].

Given a conjecture, most automated reasoning programs
would currently try to prove it true (e.g., Otter, [13])
— resulting in a theorem, or false (e.g., MACE, [14])
— resulting in a non-theorem. If they are unsuccessful
within a specified time period, then the conjecture re-
mains open.

We believe that the kind of flexibility as exhibited in
the two options above will be an essential part of the
next generation of automated theorem provers. It has
often been lamented that theorem proving systems have
not captured the attention and imagination of research
mathematicians. There are many possible reasons for



this: (i) overuse of formal notation (ii) poor proving
power of programs (iii) difficulty to use or (iv) unreli-
ability of programs. Another possible reason is the flex-
ibility problem: it may be that a mathematician is (a)
not sure whether the conjecture as stated is true and (b)
not sure whether the conjecture as stated is exactly how
they intended it to be.

As an illustrative example, imagine a young child ex-
perimenting with prime numbers. If they asked an auto-
mated theorem prover to show that all primes were odd,
they would be told that this was false. It would be much
more educational if the theorem prover stated that they
were nearly right: all primes ezcept two are odd. This
was possibly the hypothesis that the child had intended,
and the proof of this result may inspire greater under-
standing and exploration.

The first option above, namely showing that a conjec-
ture is independent of the axioms is beyond the scope
of this paper, and we focus here on the second option
outlined above. In particular, we discuss processes by
which a faulty conjecture can be analysed to produce a
modified conjecture (and proof of it). These methods are
inspired by the insights of Imre Lakatos as expressed in
[12]. Using Euler’s conjecture (see above) as a running
example, and employing a setting whereby a hypothe-
sised group of students and a teacher discuss the result,
Lakatos proposes many possible ways to fix the faulty
theorem statement.

The main purposes of the project described in this
paper are (a) to provide a computational model for the
use of Lakatos’s ideas and (b) to enhance the model and
implementation of automated theory formation (ATF)
as described in [4]. In §1.1, we briefly describe how the
work fits into the notion of automated theory formation.
The model of Lakatos-enhanced theory formation has
developed along two axes. To model the social nature of
the discourse proposed by Lakatos, we have implemented
a multi-agent system to propose, criticise and ultimately
fix faulty conjectures arising in an ATF setting. The first
axis of development is therefore the sophistication of the
agent interaction, as described in §2. The second axis is
in terms of the sophistication of the conjecture-correcting
methods proposed by Lakatos, as described in §3.

In §4 we present some illustrative examples of the en-
hanced system making and attempting to fix some faulty
conjectures. We conclude by highlighting our current
progress with respect to the two axes mentioned above,
and by suggesting some possible applications of the com-
pleted system to more specialised reasoning domains
such as automated theorem proving, machine learning
and constraint solving.

1.1 Automated Theory Formation

Automated Theory Formation, as advocated in [4], aims
to combine various reasoning techniques (inductive, de-
ductive, abductive, etc.) in order to build theories con-
taining concepts, hypotheses, examples, proofs, etc. The
theories were originally constructed only in mathemati-
cal domains, and built from first principles, e.g., axioms

and/or basic concepts supplied with objects of interest in
the domain (integers in number theory, groups in group
theory, etc.) However, recently, HR has been applied
in other scientific domains, starting with more sophisti-
cated background knowledge [3].

The functionality behind HR is based on a set of 12
production rules which invent new concepts based on
old concepts [7]. The search for concepts is heuristic:
HR has many measures of interestingness for concepts
and it takes a weighted sum of these measures in order
to determine an overall evaluation of each concept. It
builds new concepts from the more interesting old con-
cepts before the less interesting ones.

As the invention process proceeds, patterns are sought
in the examples of the concepts, and various hypotheses
are made, for instance that the examples of one con-
cept are all examples of another concept, which leads
to the statement of an implication conjecture. Similar
equivalence, non-existence and applicability conjectures
are made using empirical evidence, as described in [5].
In mathematical domains, where axioms have been sup-
plied by the user, attempts to settle the conjectures are
also made. In particular, HR employs the Otter theorem
prover [13] to attempt to prove theorems, and the MACE
model generator [14] to attempt to find counterexamples
to non-theorems.

Of importance to the project described here, we have
recently added more flexibility to HR’s conjecture mak-
ing abilities. In particular, it is now able to produce
‘near’ conjectures, such as near-equivalence conjectures
which state that one concept has the same examples as
another concept with a few exceptions. Similarly, HR
can make near-implication conjectures, which state that
all the examples of one concept are examples of another
concept, again with a few exceptions. In both cases, the
user can set a limit for the proportion of objects of in-
terest in the domain which can be exceptions. Note that
we write: A ~ B for the near conjecture that concept A
implies concept B. Similarly, we write: A «~ B for near
equivalences.

Also of importance to this project is the notion of ‘forc-
ing’ concepts. This is a process whereby the user can
guide the theory formation process in terms of which
production rule steps to carry out in which order. This
can be done interactively (on-screen) or via a file of in-
structions. Usually this guidance will be towards the
construction of particular concepts. Therefore, if the
guidance is undertaken at the very start of a theory
formation session, we can see forcing steps simply as
a different way of providing background information to
the system. This is because forcing concepts guarantees
their existence at the start of the theory in the same way
as explicitly providing them.

The extra implementation for this project has been (i)
to add Lakatos-inspired techniques (see §3) to the main
functionality of HR, so that it can correct faulty conjec-
tures, as described in §3 and (ii) to build a multi-agent
system based on the teacher-student protocol suggested
by Lakatos, in such a way that each agent has access



to the full range of abilities within HR, as discussed in
§2. We have previously showed in [6] that a multi-agent
model for theory formation (with little of the sophisti-
cation of the Lakatos-enhanced system described here),
can qualitatively improve the search undertaken by the
system as a whole. In addition to providing a compu-
tational model for Lakatos’s ideas and possible applica-
tions to other areas of Artificial Intelligence, we believe
the enhancement of the model of theory formation via
a multi-agent realisation of Lakatos’s methods will sub-
stantially improve the ability of the implemented system.

It is obvious that using Lakatos inspired techniques
will add to the richness of concepts and conjectures that
HR can make, because it can now make false (near) con-
jectures and fix them in such a way as to make them
true. Moreover, we believe the agent architecture will
increase both the efficiency and creativity of the system
as a whole. In terms of the efficiency, as with many
multi-agent systems, we will be able to distribute pro-
cesses in an intelligent way over networks. In terms of the
creativity of the system, we believe that creative actions
may follow from mistakes made by individual agents, via
argumentation and other forms of discourse within the
group. In fact, we argue in [6] that a simple multi-agent
architecture added to the creativity of the system as a
whole. We intend to test these improvements with sub-
stantial experimentation, once the final version is ready.

Given the main application of this work to the im-
provement of automated theory formation, we describe
both the agency and the Lakatos methods implemented
in terms of improved automated theory formation. In §5,
we return to the question of other potential applications
of this work.

1.2 Related Work

To our knowledge, our project is the first to use an
agency to discover and correct faulty conjectures via
a voting mechanism dependent on methods proposed
by an expert (Lakatos). Various other projects are re-
lated to this. In particular, finding counterexamples to
non-theorems is performed by model generators such as
MACE [14]. Also, in chapter 11 of [1], Bundy describes
the productive use of failure within theorem proving at-
tempts, e.g., he advocates the alteration of induction
schema in order to generalise a theorem to be proved.
Fixing of faulty conjectures has also been studied in [15].
They use proof planning to reduce the search for an-
tecedents, which, when added to an axiom system will
non-trivially make the theorem true. Their application
was to theorems proved inductively, and their system
correctly modified 80% of 45 non-theorems about inte-
gers and lists, e.g., the non-theorem that half(z) < z,
was altered to:  # 0 — half(z) < z.

Various approaches to agent-based reasoning have also
been studied. In particular, Delgrande and Mylopolous
propose logics for making decisions in a committee [10].
Also, approaches to general problem solving via dis-
tributed deduction are discussed in [11].

2 Levels of Agent Sophistication

In order to simulate the discussion in [12] we are im-
plementing the methods within an agent architecture,
consisting of a number of students and a teacher such
that each agent has a copy of HR. Our system is written
in Java and is distributed over different machines, with
the agents using sockets to communicate. The number
of agents is flexible, determined by the user, but in each
case, one agent is meant to represent a teacher, with the
other agents being students.

The problem of the agency is to model the social pro-
cess of concept and conjecture refinement described by
Lakatos, with the task being to develop interesting con-
cepts and conjectures to add to the theory. The knowl-
edge the agency starts with is the input to each copy
of HR, which consists of objects of interest, background
concepts and possibly concepts which have been forced
by the user. The motivation of the students is to accept,
modify, or reject a conjecture, and this is done by actions
which are Lakatos’s methods. The students communi-
cate by sending conjectures, concepts, and counterexam-
ples, and the teacher by sending requests such as: work
independently; send a concept to cover counterexamples
[,y,2]; or send a modification to faulty conjecture C.
Discussion is directed by the teacher who keeps a group
agenda and adds responses to it —in a depth, breadth or
best-first manner. Items which have been discussed are
recorded in a discussion vector.

The global theory is the collection of conjectures, con-
cepts, objects of interest (both those provided by the
user and those discovered as counterexamples to conjec-
tures), and proofs which the group discuss and accept.
Three main factors can influence the production of the
global theory. These are the user, the teacher and the
students, and the complexity of the system increases re-
spectively with the degree of influence that these have.
We distinguish the different layers of complexity in the
interaction between agents as follows:

1. Maximum user input (puppet show). The user sets
flags to control which methods can be used by the
students, and what should be added to the group
agenda (and in which order).

2. Teacher /user employing students as references (dic-
tatorship), i.e., the teacher plays the role of the user
above.

3. Teacher allowing students to make decisions — the
students decide which method they want to use on
a particular faulty conjecture.

4. Students decide the group agenda and global theory
(democracy). Students decide about the order in
which responses are inserted into the agenda, i.e.,
they evaluate all responses and the order is decided
by the group, for example by a vote.

5. Students allowed class discussion — they can inter-
act with each other directly and are not tied to re-
sponding to the teacher’s requests. They can also
send requests themselves.



Currently, our agent architecture is at level 2. We are
implementing abilities for the students to make their own
decisions (level 3).

In terms of the BDI — beliefs, desires and intentions
— approach outlined in [18], the agents’ beliefs consist of
the data input to their copy of HR. Their desires include
building an interesting theory, accepting, modifying or
rejecting a specific conjecture (depending on the propor-
tion of their examples it holds for, and how interesting it
is according to their evaluation function). Their inten-
tions are to perform specific Lakatos methods or parts of
the methods. For details of how the Lakatos’s methods
(in particular, monster-barring) fit into the literature on
argumentation-based negotiation, see [17].

3 Lakatos’s Methods

Lakatos identified many methods from mathematical
practice in [12], which we briefly characterise below.
Broadly speaking, the first of these is simply scientific
induction, where hypotheses are produced by generalis-
ing from particular examples (as opposed to mathemat-
ical induction, which is a proof procedure). The second
of these is surrender, whereby a decision is taken not to
attempt to modify a faulty conjecture. The next five
methods describe ways of fixing faulty conjectures in the
light of known counterexamples. The final two meth-
ods — lemma incorporation and proofs and refutations —
describe how counterexample finding and modification
of theorem statements can be used to fruitfully prove
mathematical results. Given a conjecture, C', Lakatos’s
methods can be described as follows:

1. Induction: generalise from particulars.

2. Surrender: look for counterexamples to C' and use
them to refute the conjecture.

3. Monster-barring: modify the definition of objects
in the theory, to exclude an unwanted counterexample.

4. Piecemeal exclusion: find the properties which
make the counterexamples break C, and then modify C
by excluding objects with those properties.

5. Strategic withdrawal: consider the examples for
which C' does hold, generalise properties of those exam-
ples, and limit C' to only examples with those properties.
6. Monster adjusting: reinterpret a counterexample
so that it no longer violates C'.

7. Lemma incorporation: given a global counterex-
ample (i.e. one which violates C), find which step of
the proof it violates and then modify C' by making that
step a condition. Given a local counterexample (which
violates a proof step but not C), look for a hidden as-
sumption in the proof step, then modify both the proof
and C' by making the assumption an explicit condition.
8. Proofs and refutations: use the proof steps to sug-
gest counterexamples. For any counterexamples found,
test whether they are local or global counterexamples
and perform lemma incorporation.

3.1 Implementation Details

So far, we have implemented methods based on Lakatos’s
notions of surrender, piecemeal exclusion and strategic
withdrawal. Note that there has been a certain amount
of rationalisation and interpretation — within the con-
text of automated theory formation — of the methods
described by Lakatos. In particular, we have had to
be more concrete about the application of the methods.
For instance, the implemented techniques differ slightly
when applied to a near-equivalence or a near-implication.

Note also that, with the exception of surrender, an
agent would deploy one of these techniques by (a) de-
termining what the nature of the fault in the conjecture
is, e.g., finding the relevant counterexamples and identi-
fying whether concepts on the left, right, or both sides
of a near conjecture have to be altered, and (b) adding
steps to the agent’s version of HR’s agenda which will
effectively force the theory formation. The forcing of the
theory formation steps will lead to the altered versions
of concepts being introduced, which in turn will lead to
an altered version of the original conjecture being dis-
covered. Note that both the original and the modified
conjecture will appear in the theory.

We explain the methods below in terms of conjectures
which relate concepts of a binary nature. Binary con-
cepts express properties of the objects of interest, such
as whether an integer is prime or not, or whether a group
is cyclic or not, etc. The advantage to this is that we
can talk about those objects of interest which are posi-
tive with respect to a concept, for instance, we can say
that 2,3,5,7 are positives for the concept of prime num-
bers. Likewise, we know that the integers 1,4,6,8,9 are
negatives for the concept of prime numbers. Note that
the methods generalise to deal with conjectures of any
arity, but this functionality is not yet implemented.

® Surrender

This is the simplest method, as there is no conjecture re-
finement — the conjecture is simply abandoned in the face
of a set of counterexamples. Until recently, this has been
HR’s only mode of operation. However, in the enhanced
system, given a faulty conjecture, only if an agent is re-
quested to perform surrender (either by the user or the
teacher), or it is unable to find any suitable conjecture
refinement, will an agent surrender the conjecture.

It is very important to know which conjectures to sur-
render and which to attempt to refine, because, in a
theory formation setting, an agent may be generating or
receiving large numbers of conjectures. We are currently
investigating more sophisticated ways of measuring the
interestingness of a conjecture which has been broken by
counterexamples. For instance, if an ordering over the
objects of interest is available (e.g., the natural order-
ing of the integers), then possibly more counterexamples
should be allowed before surrendering, if the counterex-
amples are small — in the sense of the ordering. There
are many examples of theorems to which numerous small
(often trivial) objects are the only counterexamples.



® Concept-barring

Inspired by Lakatos’s piecemeal exclusion methods, we
have differentiated between concept-barring, which is
where a concept is excluded from a conjecture state-
ment, and counterexample-barring, where counterexam-
ples are listed in the conjecture as exceptions (see below).
In concept-barring, given a near equivalence P «w (@,
agents first determine whether the counterexamples are
positives for P only, positives for @) only, or split between
the two. If all counterexamples are positives for P, an
agent will:

(i) Find a concept, X, in the theory which exactly covers
the counterexamples. By this, we mean that the posi-
tives for X are exactly the counterexamples, with no
exceptions.

(ii) Form the concept P A =X by forcing a ‘negate’ pro-
duction rule step onto the agenda and carrying it out
(see [4] for a description of the negate rule).

(iii) Make the conjecture P A =X ¢ Q.

The agent will undertake a similar routine if all the coun-
terexamples are positives for ). If some counterexamples
are positives for P and others for ), the agent will:

(i) Find a concept, X, in the theory which exactly covers
the counterexamples which are positive for P.

(ii) Form the concept P A —X via the appropriate forced
negate step.

(iii) Find a concept, Y, in the theory which exactly cov-
ers the counterexamples which are positive for Q.

(iv) Form the concept Q A—Y via the appropriate forced
negate step.

(v) Make the conjecture P A =X < Q A Y.

We intend to allow more flexibility to this method, by
enabling the agents to find concepts which cover a super-
set of the counterexamples. The agent deals with near-
implications similarly. In the case of an implication such
as P ~ (@, the counterexamples must be positive for P
and negative for @), hence the agent will construct the
conjecture P A =X — (Q using an appropriate concept
X, if it can find one in its theory.

® Counterexample-barring

Given a faulty conjecture for which an agent cannot find
concepts to cover the counterexamples, the agent will
choose to perform counterexample-barring. Given a near
implication P ~~ @, with counterexamples [z,y, 2], the
agent will:

(i) Use the ‘entity_disjunct’ production rule to form the
concept of an object of interest being either z,y or z.
This is a new production rule implemented for this ap-
plication to Lakatos’s methods (such functionality can
be replicated using HR’s existing split and disjunct pro-
duction rules, but implementing a new production rule
was a neater solution). Hence the agent will form the
concept, X, of objects of interest, n, for which

n=zxVn=yVn=z.

(ii) Apply the negate production rule to P and X, to
produce the concept P A —X.
(iii) Make the conjecture P A =X — Q.

Note that, for both counterexample and concept-
barring, it may be productive to split near-equivalences
into two near-implications and apply the routine to both
near-implications. For instance, starting with the faulty
conjecture z is prime «~ z is odd, an agent might pro-
duce the conjecture that primes except 2 are odd and the
conjecture that odd non-squares are prime. In this case,
the second conjecture turns out to be false, but in gen-
eral, splitting near-equivalences into near-implications
may be fruitful. This is analogous to how HR splits
normal equivalences, as discussed in [5], and we are cur-
rently implementing it for near-equivalences.

® Strategic withdrawal

Strategic withdrawal aims to find a property of (some of)
the objects of interest which do not break the conjecture,
such that the property is true of none of the counterex-
amples. The modified conjecture statement would then
restrict the scope of the original conjecture by declaring
that only objects of interest with the property are to be
considered. Naturally, this could be achieved by finding
a property true of only the counterexamples and negat-
ing it, which basically implements the concept-barring
method described above. However, in the general case,
the property may be true of only a (preferably large)
subset of the objects which do not break the conjecture.
Hence we see that strategic withdrawal has the potential
to modify conjectures in different ways to the concept-
barring method. In addition, given that these methods
operate within a multi-agent system, one agent (usually
the teacher) can request a concept which covers certain
objects, and then use the most interesting concept it re-
ceives in the conjecture refinement. Hence, using both
strategic withdrawal and concept-barring give a larger
choice of concepts from which to select.

Given a near-equivalence P «~ (), the agent deter-
mines whether each counterexample is a positive for P
or (). If all the counterexamples are positives for P, then
the agent:

(i) Finds a concept, X, in the theory which exactly covers
the objects of interest which are positive for both P and
Q@ (and is different from Q).

(ii) Makes the following conjectures: X < Q; X — Q;
X - P.

Similarly, if all the counterexamples are positives for @),
the agent forms the conjecturesY < P;Y — P;Y — Q,
for a suitable concept, Y, (which is different from P).

If some counterexamples are positives for P and others
are positives for @), then the agent:

(i) Finds a concept, Z, in the theory which exactly covers
the positives for both P and Q.
(ii) makes the following conjectures: Z — P; Z — Q.



We intend to allow more flexibility in this method, by
enabling the agents to find concepts which cover only a
subset of the non-counterexamples.

Different methods may lead to the same conjecture
refinement. For instance, we could rephrase the piece-
meal exclusion example all integers except squares have
an even number of divisors as an example of strategic
withdrawal if we replace ‘all integers except squares’ with
‘all non-squares’ in the refined conjecture statement. Re-
dundancy in HR’s search space has always both (a) posed
a problem, in terms of making it realise that it has in-
vented the same concept twice and avoid making dull
tautology conjectures and (b) been a source of power for
the system: often, concepts we thought were outside of
its search space have been re-invented with non-standard
definitions.

4 TIllustrative Results

We have been testing the development of our system with
examples in number theory. This is a different domain to
the domain of the running example in Lakatos’s work,
and thus enables us to test how general the methods
are (Lakatos claimed that they were not specific to the
polyhedra domain). We aim to validate the implemented
techniques in different domains (including polyhedra) at
a later date. We present below some runs which illus-
trate how the implemented methods work. Some of the
sessions were contrived to produce particular — illustra-
tive — results quickly, so that we did not have to sift
through the output from the system to find the intended
result. We hope to present results from less contrived
sessions when the completed system is used for longer
theory formation sessions at a later date.

In all cases, the interaction was via the teacher who
asked the students to work independently for 20 theory
formation steps. The teacher then put the conjectures
it received onto the agenda in a depth-first manner and
requested modifications from each student for each con-
jecture in turn. The students had individual ways of
evaluating the conjectures they produced (for details of
the measures of interestingness used in HR, see [8]). The
specifics of the evaluation are not relevant here.

4.1 Concept-barring

We ran the agency with three students and a teacher.
The first student started with the integers 1-10, the sec-
ond with the integers 11-50 and the third with the in-
tegers 51-60. Each student started with the background
concepts of integers, divisors and multiplication, and the
forced concepts of squares and integers which have an
even number of divisors. The teacher asked the stu-
dents to send back their best equivalence conjecture,
when evaluated using the weighted sum of measures of
interestingness specific to the agent. The user set flags
enabling all students to perform both concept-barring
and counterexample-barring.

The third student formed the conjecture that x is an
integer if and only if it has an even number of divisors,

which is true of the integers 51-60. Students 1 and 2
found counterexamples 1, 4, 9 and 16, 25, 36, 49 respec-
tively. Students 1 and 2 then looked for a concept to
cover these and both found the concept of square num-
bers in their theory covered their counterexamples pre-
cisely (this is not surprising, as it was forced by the user
at the start). They then formed the new concept of non-
squares. In forming the new concept, they discovered the
conjecture that z is non-square if and only if it has an
even number of divisors. We see that the original equiv-
alence conjecture that n is an integer iff it has an even
number of divisors has been modified to: n is a non-
square if and only if it has an even number of divisors.

4.2 Counterexample-barring

We ran two example sessions. In the first, we used an
agency with two students and a teacher. The first stu-
dent started with the integers 1-10 and the second stu-
dent started with 11-20. Both students started with the
background concepts of integers and divisors, and the
forced concepts of prime numbers and odd numbers. The
user set flags enabling both students to perform concept-
barring and counterexample-barring. The teacher re-
quested implication conjectures. The second student
made and sent the conjecture that all primes are odd,
which is true for the integers 11-20. The first student
then found counterexample 2 and looked for a concept
for which 2 was the only positive example. This failed, so
the first student decided to use counterexample-barring.
Hence it used the entity-disjunct rule to force the pro-
duction of the concept of integers which are 2, and then
used the negate production rule to force the concept of
primes except 2. At the introduction of this concept, it
made the conjecture that all primes except 2 are odd.
Hence we see that the conjecture that all primes are odd
has been modified to the conjecture that all primes ex-
cept 2 are odd.

In the second example session, we again used an
agency with two students and a teacher. The first stu-
dent started with integers 1-10 and the second started
with 11-20. Both students were given the background
concepts of integers and divisors. In addition, we gave
both students the forced concepts of even numbers and
integers which are the sum of two primes. Again, the
teacher requested implication conjectures. The second
student made the conjecture that all even numbers are
the sum of two primes, which is true of the integers 11-
20. The first found the counterexample 2, and invented
the concept of even numbers except 2 in response. This
led it to the modified conjecture that all even numbers
except 2 are the sum of two primes (Goldbach’s conjec-
ture).

4.3 Strategic Withdrawal

We ran the agency with two students and a teacher,
where both students started with the integers 1-10 and
the background concepts of integers, less than or equal,
divisors, digit of, multiplication and addition. Also, each
student was given the forced concepts of prime numbers



and odd numbers. The second student had the addi-
tional forced concept of odd non-squares. Both students
were set to make near equivalences which held for 60%
of the objects of interest. The user set flags enabling
both agents to perform strategic withdrawal only, and
the teacher requested near equivalence conjectures.

The first student made the near equivalence conjec-
ture that: n is prime «w n is odd. The second student
then found counterexamples 2, which is prime and not
odd, and 1 and 9 which are odd but not prime. As it
was set to perform strategic withdrawal, it then looked
for a concept to cover the objects of interest which were
positives for both the left hand and the right hand con-
cepts, namely 3, 5, 7. It found that the concept of odd
non-squares covered these examples precisely. Hence, it
then made these modified conjectures:

n is odd A n is non-square — n is odd.
n is odd A n is non-square — n is prime.

Note that the first modified conjecture is an instance
of a tautology and the second one is false — the first
counterexample is 15. This is an illustrative example
of strategic withdrawal in action, and it highlights that
these methods are themselves heuristic: given the nature
of the two modified conjectures produced, it seems that
surrender would have been better here.

5 Conclusions and Further Work

We have given an account of automated theory forma-
tion and shown how it has been enhanced by ideas from
Lakatos which has led to an implementation which (a)
represents a social setting using a multi-agent system
and (b) implements specific techniques for modifying a
faulty conjecture in the light of known counterexamples.
To the best of our knowledge, this is the first imple-
mentation of a system based on the ideas laid down by
Lakatos. Moreover, the introduction of these methods
represents a major step forward in our account of au-
tomated theory formation. To highlight this, we gave
illustrated results of how the implemented techniques op-
erate within the context of automated theory formation.

In terms of the two axes of development described in
82 and §3, namely the sophistication of the agent in-
teraction and the sophistication of the conjecture-fixing
techniques, we are more advanced along the latter axis.
In particular, our agents cannot yet be thought of as au-
tonomous, as the students do not yet make their own
decisions about which Lakatos methods to employ. We
are currently implementing such autonomous behaviour.
With respect to the methods themselves, we have im-
plemented techniques based on surrender, piecemeal ex-
clusion and strategic withdrawal. In order to implement
and test other Lakatos methods, it seems likely that we
will have to concentrate on another domain. For in-
stance, monster-barring is not particularly appropriate
in number theory, as using this method would amount
to stating that, for instance, the number 17 is not really
an integer. Similarly, monster adjusting is not entirely
appropriate in number theory.

It is our intention to pursue both axes of development
to conclusion, and in doing so develop a reasoning system
able to take advantage of all the techniques prescribed
by Lakatos, carried out within a complex communica-
tion environment. We believe that the enhancements to
theory behind and implementation of automated theory
formation afforded by the methods described here will
substantially increase the effectiveness of the system, and
we hope to qualitatively demonstrate this soon.

As with the single version of HR, we propose to use
a ‘shotgun’ approach to assess the value of our system.
In particular, we will compare it with other approaches
to fixing faulty conjectures, using example sets such as
the one described in [15]. We will also attempt to ob-
jectively judge whether the system acts like the agency
hypothesised by Lakatos, by giving detailed case studies.
These will be performed in various domains in addition
to the training domain — number theory. We will also
perform extensive testing to determine how much the
new system is an improvement on the single version of
HR. That is, we will look at all aspects of theory for-
mation and determine whether the new system is able
to create a richer theory (i.e., search a more interest-
ing/larger space) and/or create theories more efficiently.

We plan to improve the system in many ways. In par-
ticular, we hope to make the current techniques more
flexible, for instance by enabling agents to look for con-
cepts which cover some, but maybe not all of the ex-
amples. Also, we hope to enable agents to attempt
to generate concepts which fit sets of objects of inter-
est (counterexamples, etc.) rather than just looking for
concepts existing in the theory already, i.e., using induc-
tion rather than abduction to identify covering concepts.
This is essentially a machine learning problem, and we
could employ machine learning techniques such as in-
ductive logic programming (ILP) [16] to identify useful
concepts. Note however, that HR, itself has been fruit-
fully applied to such problems [7].

We believe that techniques for automated theory for-
mation, and in particular the modification of hypotheses
such as those presented here, are vital for the building
of more intelligent reasoning systems. In particular, a
current focus of attention in computer science is grid
technology. The prospect of undertaking scientific en-
deavours with data, programs and resources distributed
across the world is (purported to be) on the horizon.
Even in our illustrative examples, we saw how the dis-
tribution of data between agents (i.e., the integers they
were given) led to the introduction of faulty hypothe-
ses. It is inconceivable to think that scientific projects
using the grid will not run into similar inconsistencies,
and robust systems for handling argumentation and co-
operation between grid agents are being designed and
built. Hence, it seems likely that something akin to the
Lakatos-style methods we have implemented will be re-
quired for the projects to be carried out successfully.

Moreover, automated theory formation has much po-
tential for the automatic reformulation of AI problem
statements (pre-processing) and the reformulation of



problem answers (post-processing). In particular, HR
has already been fruitfully used to discover new con-
straints for constraint satisfaction problems concerning
quasigroups [9]. Moreover, we have recently begun ex-
periments with HR pre-processing the input to the Pro-
gol ILP machine learning system, in such a way that use-
ful features of the data are identified as potential targets
to learn over. A potential use of the Lakatos methods
is in post-processing machine learning outputs, which
are essentially hypotheses. These hypotheses often have
known counterexamples, and hence could be subject to
re-formulation using the techniques described here.

However, perhaps the biggest potential for Lakatos-
enhanced automated theory formation lies in the appli-
cation to automated theorem proving. Of course, one
reason for our optimism is that Lakatos’s original no-
tions were extracted from the (hypothesised) efforts of
mathematicians attempting to prove a theorem. Also, as
we stated earlier, we believe there needs to be more flex-
ibility in the approach that theorem provers take. At
present, in general it is expected that an ATP system
will be given what is expected to be a theorem, with no
noise in terms of (a) the concept definitions within the
theorem statement (b) the structure of the theorem, and
(c) the empirical evidence — if any — which was used to
support the theorem in the first place.

We believe that — as with CSP solving and machine
learning — ATP systems which are to be of use to do-
main scientists will need to handle noise, and be more
flexible than they are at present. The Lakatos-enhanced
system described here is designed to be such a flexible
system. Although the emphasis is not on theorem prov-
ing itself, we believe that adding such Lakatos-enhanced
theory formation abilities to a prover would substantially
improve the flexibility and intelligence of the system. We
envisage a sophisticated ATP system which can be given
an ill-formed, possibly false conjecture — such as those
that research mathematicians work with everyday — and
through a collective reasoning process, produces a proved
theorem that closely resembles the original. We believe
that such functionality is essential to the future develop-
ment of ATP and other reasoning systems.
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