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1 Overview

We believe that in order to build more powerful Al systems, it
will be necessary to combine techniques from machine learn-
ing, automated deduction, constraint solving, computer al-
gebra, planning and other domains. In particular, as argued
by philosophers such as Lakatos [5], mathematical discovery
processes rely on a plethora of reasoning techniques, includ-
ing deduction, induction, abduction, symbolic manipulation,
etc. To demonstrate that the whole can be more than the
sum of the parts when combining systems, we have performed
a number of case studies in automated mathematics. These
demonstrate that, with respect to stand-alone systems, com-
bined reasoning systems can: (a) be more flexible in their
application [4] (b) undertake new tasks [2] and (c) perform
standard tasks better [3].

We present here the initial stages of a case study which
we hope will further demonstrate that combined reasoning
systems have the potential to out-perform single technique
systems at standard tasks, in this case proving theorems. In
particular, we show that descriptive machine learning can be
used to suggest ways to split theorems into cases. This can
be done in such a way that the combined time to prove all the
cases is less than the time to prove the unaltered theorem.
We use the HR descriptive learning system [1] to provide the
case splits and Otter [6] as the theorem prover, with the TM
system [4] providing the integration of these systems. While
Otter is not the fastest prover, it has certain advantages, not
least the fact that it is probably the most used prover in the
mathematical community. Hence, optimizing the runtime in
the application of Otter is useful, and doing it in a cognitively
plausible way such as case splitting may be of interest to
the mathematicians who use Otter. Indeed, it may be that
the case splits provided by the combined system are more
interesting than the fact that the theorem provided was true.

2 Case Splitting Procedure

We build on the work presented in [4]. In that application,
we used TM to provide alternative proved theorems to a
given non-theorem. For instance, given the non-theorem that
all groups are Abelian, TM replied by saying that this was
false, but that self-inverse groups are Abelian. In the current
application, we supply TM with a theorem of the form Az |=
S, where Az is a set of axioms which define a domain, and
S is a statement which is hypothesised to follow from the
axioms. TM generates a set of additional axioms to be added
as extensions to the original set. We denote these extensions
FE,,...,E,, and they have the property that:

® Otter has proved that Vi (Az A E; |E S)

® Fi V...V E, follows from the definitions of the extensions.

Given this, we can infer that AzA(E1V...VE,) E S, hence
Az ATrue |= S, hence Az |= S. So, if TM can generate such
a set of axiom extensions, it will have effectively proved the
theorem.

To produce the axiom extensions, TM first uses HR to
generate a theory from the axiom set Az. Details of how HR
works are given in [1], and for our purposes, we only need
to know that the theory contains, amongst other things, a
set of Boolean concepts C1, ..., C, which are true of at least
one model of the domain. To generate the extensions, TM
takes C and attempts to prove both: Az A Cy |E S and
Az A—-C; |= S. If both are proved, then the overall theorem
is proved. Supposing, however, that the latter conjecture
cannot be proved, then TM further specialises the theorem
into Ax A—Cy; ACy = S and Az A—Cy A—Cy = S. This con-
tinues in the obvious fashion, so that each E; is a conjunction
of a subset of {C,...,Cy,~C,...,—C,}, and the disjunc-
tion of all the extensions covers all models of the domain.
TM maintains an agenda of specialised theorems to prove
and is able to tell when the set of proved ones constitutes a
proof of the entire theorem.

3 Preliminary Results

This study is very much a work in progress, and while our
preliminary results are certainly not conclusive, they are en-
couraging. We have concentrated on a particular theorem,
namely GRP119-1.p from the TPTP library [8], which is
paraphrased as follows. Given the following single axiom:

Via,y,z (y*((yxy) x (2 x2)) * (2% (2% 2))) = 7)

and the fact that the identity element is such that: id %
id = id, then all elements in the algebra are of order 4, i.e.,
V a (a*x(ax(axa)) = id). This theorem originally came from
[9], and takes Otter 74 CPU seconds to prove on a 2.4Ghz
intel processor.

Noting that the single axiom defines order four groups, we
used HR to generate a theory of groups, for approximately
30 minutes. This produced 20 non-negated binary concepts
to be used in case splits. After some experimenting, and
using only statistics from Otter run-times, we hand-ordered
the concepts (note that such hand-crafting is commonplace
in, for example, constraint solving). We then ran TM in
case split mode, allowing it 6 seconds for each case split.
TM could not prove the original theorem, but went on to
produce 4 case splits, 3 of which were proved, as in Figure
1. The proofs of the three case splits constituted a proof of
the original theorem. More importantly, TM ran for only 10
seconds. This time includes the calls to Otter, but not, of
course, the 30 minutes of HR time. However, we note that
HR only has to be run once in group theory and the results
can be applied to any theorem.
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Figure 1: Case split tree for theorem GRP119-1.p

It seems apparent from our initial testing that the success
of the case splitting procedure is dependent on the ordering of
the concepts — as other orderings we tried were unsuccessful —
and on the time Otter is allowed for each case (too little and
it fails to prove easy cases, too much and it tends to spend
too long on cases which ultimately do not lead to a solution).
Interpreting the concepts in Figure 1 is non-trivial, but not
difficult. We see that the first concept specialises the algebras
into trivial and non-trivial, and the second concept states
that every element z has a counterpart a for which a*(axz) =
x, yet x * a does not appear on the diagonal. It is not clear
why this latter concept enabled the case splitting to work
where others failed. Note that a similar but different hand-
ordering of the concepts available for case splits produced a
proof with more case splits in around 30 seconds.

These preliminary results are encouraging because (a)
there is a seven fold increase in efficiency (b) the number
of case splits is small and the complexity of the concepts
is low, and (c¢) two separate orderings gave significant speed-
ups, which may mean that the procedure is more robust that
we originally expected.

4 Future Work

Naturally, the next step is to automate the hand ordering
of the concepts available for the case splits. We intend to
try many different heuristics for this ordering, including (a)
using the case splitting methods on many theorems from the
TPTP library to estimate the expected speed increase of each
concept, and using this to order them (b) choosing concepts
which split the models into roughly equal positive and neg-
ative sets (c) choosing concepts which highly specialise the
domain, e.g., concept 1 above. Also, at present, we are lim-
ited to binary case splits. In future, we plan to extend into
general case splits, which will mean that we need to use Otter
to prove that all models satisfy the disjunction of all the con-
cepts. Moreover, there are many opportunities to use a first
order predictive machine learning system such as the Pro-
gol ILP program [7]. In particular, using such a predictive

learner would enable us to be more pro-active in the choice
of case splits: we could choose which models should go in the
positive/negatives of the concept, and then learn a definition
to fit the models. We also plan much more experimentation
to determine the effectiveness of this procedure in general.
We hope to show, once more, that combined reasoning sys-
tems have advantages over their stand-alone counterparts.
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